We support Open Science and aim to make all data and code associated with our published studies available online (click [DATA] or [CODE] links below each title). If you would like data or code not seen here please just ask. We have also created a user-friendly toolbox bringing together models and methods for analysing analogue report tasks.
A dynamic neural resource model bridges sensory and working memory
bioRxiv
doi:10.1101/2023.03.27.534406
[PREPRINT]
Neural tuning instantiates prior expectations in the human visual system
bioRxiv
doi:10.1101/2023.01.26.525790
[PREPRINT]
Representation and computation in working memory
REVIEW
PsyArXiv
doi:10.31234/osf.io/kubr9
[PREPRINT]
Perceptual similarity judgments do not predict the distribution of errors in working memory
Journal of Experimental Psychology: Learning, Memory and Cognition
2022 Nov 28. Online ahead of print. doi:10.1037/xlm0001172
(2022)
[PDF | HTML | CODE+DATA]
Working memory is updated by reallocation of resources from obsolete to new items
Attention, Perception & Psychophysics
2022 Oct 17. Online ahead of print. doi:10.3758/s13414-022-02584-2
(2022)
[PDF | HTML | CODE+DATA]
Swap errors in visual working memory are fully explained by cue-feature variability
Cognitive Psychology
137 (2022) 101493. doi:10.1016/j.cogpsych.2022.101493
(2022)
[PDF | HTML | CODE+DATA]
Role of time in binding features in visual working memory
Psychological Review
2023 Jan;130(1):137-154. Epub 2022 Jan 31. doi:10.1037/rev0000331
(2022)
[PDF | HTML | CODE+DATA]
Mechanisms of feature binding in visual working memory are stable over long delays
Journal of Vision
21(12): 7. doi:10.1167/jov.21.12.7
(2021)
[PDF | HTML | CODE+DATA]
Transsaccadic integration operates independently in different feature dimensions
Journal of Vision
Jul 6; 21(7): 7. doi:10.1167/jov.21.7.7
(2021)
Special Issue: “From Peripheral to Transsaccadic and Foveal Perception”
[PDF | HMTL | CODE+DATA]
Limited memory for ensemble statistics in visual change detection
Cognition
214: 104763. doi:10.1016/j.cognition.2021.104763
(2021)
[PDF | HTML | CODE+DATA]
Transsaccadic integration relies on a limited memory resource
Journal of Vision
May 3; 21(5): 24. doi:10.1167/jov.21.5.24
(2021)
Special Issue: “From Peripheral to Transsaccadic and Foveal Perception”
[PDF | HTML | CODE+DATA]
Location-independent feature binding in visual working memory for sequentially presented objects
Attention, Perception & Psychophysics
83: 2377–2393. doi:10.3758/s13414-021-02245-w
(2021)
[PDF | HTML | CODE+DATA]
Consequence of stroke for feature recall and binding in visual working memory
Neurobiology of Learning and Memory
2021 Jan 15: 107387. doi:10.1016/j.nlm.2021.107387
(2021)
[PDF+SI | HTML]
Correspondence between population coding and psychophysical scaling models of working memory
bioRxiv
doi:10.1101/699884
(2020)
[PREPRINT]
Stochastic sampling provides a unifying account of working memory limits
Proceedings of the National Academy of Sciences
2020 Aug, 202004306. doi:10.1073/pnas.2004306117
(2020)
[PDF+SI | HTML | CODE+DATA | TOOLBOX]
Theory of neural coding predicts an upper bound on estimates of memory variability
Psychological Review
127(5): 700–718. doi:10.1037/rev0000189
(2020)
[PDF | HTML | CODE+DATA]
The effect of frontoparietal paired associative stimulation on decision-making and working memory
Cortex
117: 266–276. doi:10.1016/j.cortex.2019.03.015
(2019)
[PDF | HTML]
Recall of facial expressions and simple orientations reveals competition for resources at multiple levels of the visual hierarchy
Journal of Vision
19(3): 8. doi:10.1167/19.3.8
(2019)
[PDF | HTML | DATA]
Independent working memory resources for egocentric and allocentric spatial information
PLOS Computational Biology
15(2): e1006563. doi:10.1371/journal.pcbi.1006563
(2019)
[PDF+SI | HTML | DATA]
Flexible updating of dynamic knowledge structures
Scientific Reports
9(1): 2272. doi:10.1038/s41598-019-39468-9
(2019)
[PDF | HTML]
Functions of memory across saccadic eye movements
REVIEW
Current Topics in Behavioral Neurosciences
41:155–183. doi:10.1007/7854_2018_66
(2019)
[PDF | HTML]
Internal but not external noise frees working memory resources
PLOS Computational Biology
14(10): e1006488. doi:10.1371/journal.pcbi.1006488
(2018)
[PDF | HTML | DATA]
The ipsilesional attention bias in right hemisphere stroke patients as revealed by a realistic visual search task: neuroanatomical correlates and functional relevance
Neuropsychology
32(7): 850–865. doi:10.1037/neu0000493
(2018)
[PDF | HTML]
New perspectives on binding in visual working memory
REVIEW
British Journal of Psychology
110(2): 207–244. doi:10.1111/bjop.12345
(2018)
[PDF | HTML]
Efficient coding in visual working memory accounts for stimulus-specific variations in recall
Journal of Neuroscience
38(32): 7132–7142. doi:10.1523/JNEUROSCI.1018-18.2018
(2018)
[PDF | HTML | DATA]
Failure of self-consistency in the discrete resource model of visual working memory
Cognitive Psychology
105: 1–8. doi:10.1016/j.cogpsych.2018.05.002
(2018)
[PDF | HTML | DATA]
Drift in neural population activity causes working memory to deteriorate over time
Journal of Neuroscience
38(21): 4859–4869. doi:10.1523/JNEUROSCI.3440-17.2018
(2018)
[PDF | HTML | DATA]
Visual working memory is independent of the cortical spacing between memoranda
Journal of Neuroscience
38(12): 3116–3123. doi:10.1523/JNEUROSCI.2645-17.2017
(2018)
[PDF | HTML | DATA]
Reassessing the evidence for capacity limits in neural signals related to working memory
Cerebral Cortex
28(4): 1432–1438. doi:10.1093/cercor/bhx351
(2018)
[PDF | HTML]
A neural model of retrospective attention in visual working memory
Cognitive Psychology
100: 43–52. doi:10.1016/j.cogpsych.2017.12.001
(2018)
[PDF | HTML | DATA]
Restoration of fMRI decodability does not imply latent working memory states
Journal of Cognitive Neuroscience
29(12): 1977–1994. doi:10.1162/jocn_a_01180
(2017)
[PDF | HTML | CODE]
Automatic and intentional influences on saccade landing
Journal of Neurophysiology
118: 1105–1122. doi:10.1152/jn.00141.2017
(2017)
[PDF | HTML | DATA]
Neural architecture for feature binding in visual working memory
Journal of Neuroscience
37(14): 3913–3925. doi:10.1523/JNEUROSCI.3493-16.2017
(2017)
[PDF | HTML | DATA | TOOLBOX]
Fidelity of the representation of value in decision-making
PLOS Computational Biology
13(3): e1005405. doi:10.1371/journal.pcbi.1005405
(2017)
[PDF | HTML | DATA]
Reduced hippocampal functional connectivity during episodic memory retrieval in autism
Cerebral Cortex
27: 888–902. doi:10.1093/cercor/bhw417
(2017)
[PDF | HTML]
Distinct neural mechanisms underlie the success, precision, and vividness of episodic memory
eLife
5: e18260. doi:10.7554/eLife.18260
(2016)
[PDF | HTML]
A signature of neural coding at human perceptual limits
Journal of Vision
16(11): 4. doi:10.1167/16.11.4
(2016)
[PDF | HTML | TOOLBOX]
Competition between movement plans increases motor variability: evidence of a shared resource for movement planning
Journal of Neurophysiology
116(3): 1295–303. doi:10.1152/jn.00113.2016
(2016)
[PDF | HTML]
No fixed item limit in visuospatial working memory
Cortex
83: 181–193. doi:10.1016/j.cortex.2016.07.021
(2016)
[PDF+SI | HTML | CODE+DATA | TOOLBOX]
Evaluating and excluding swap errors in analogue tests of working memory
Scientific Reports
6: 19203. doi:10.1038/srep19203
(2016)
[PDF | HTML | TOOLBOX]
Spikes not slots: noise in neural populations limits working memory
REVIEW
Trends in Cognitive Sciences
19(8): 431–438. doi:10.1016/j.tics.2015.06.004
(2015)
[PDF | HTML]
Evidence for optimal integration of visual feature representations across saccades
Journal of Neuroscience
35(28): 10146–10153. doi:10.1523/JNEUROSCI.1040-15.2015
(2015)
[PDF | HTML]
A probabilistic palimpsest model of visual short-term memory
PLOS Computational Biology
11(1): e1004003. doi:10.1371/journal.pcbi.1004003
(2015)
[PDF | HTML]
Eye-Search: a web-based therapy that improves visual search in hemianopia
Annals of Clinical and Translational Neurology
2(1): 74–78. doi:10.1002/acn3.154
(2015)
[PDF | HTML]
Noise in neural populations accounts for errors in working memory
Journal of Neuroscience
34(10): 3632–3645. doi:10.1523/JNEUROSCI.3204-13.2014
(2014)
[PDF | HTML | DATA | TOOLBOX]
Changing concepts of working memory
REVIEW
Nature Neuroscience
17(3): 347–356. doi:10.1038/nn.3655
(2014)
[PDF | HTML]
Working memory retrieval as a decision process
Journal of Vision
14(2): 2. doi:10.1167/14.2.2
(2014)
[PDF | HTML]
Functional magnetic resonance imaging of impaired sensory prediction in schizophrenia
JAMA Psychiatry
71(1): 28–35. doi:10.1001/jamapsychiatry.2013.2974
(2014)
[PDF | HTML]
Age-related decline of precision and binding in visual working memory
Psychology & Aging
28(3): 729–43. doi:10.1037/a0033236
(2013)
[PDF | HTML | DATA]
Dopamine reverses reward insensitivity in apathy following globus pallidus lesions
Cortex
49(5):1292–303. doi:10.1016/j.cortex.2012.04.013
(2013)
[PDF | HTML]
Rapid compensation of visual search strategy in patients with chronic visual field defects
Cortex
49(4):994–1000. doi:10.1016/j.cortex.2012.03.025
(2013)
[PDF | HTML]
Modulation of somatosensory processing by action
Neuroimage
70, 356–362. doi:10.1016/j.neuroimage.2012.12.043
(2013)
[PDF | HTML]
Obligatory encoding of task-irrelevant features depletes working memory resources
Journal of Vision
13(2):21, 1–13. doi:10.1167/13.2.21
(2013)
[PDF | HTML]
Rapid forgetting prevented by retrospective attention cues
Journal of Experimental Psychology: Human Perception & Performance
39(5): 1224–31. doi:10.1037/a0030947
(2012)
[PDF | HTML]
Active inhibition and memory promote exploration and search of natural scenes
Journal of Vision
12(8):8, 1–18. doi:10.1167/12.8.8
(2012)
[PDF | HTML]
Development of visual working memory precision in childhood
Developmental Science
15(4) 528–39. doi:10.1111/j.1467-7687.2012.01148.x
(2012)
[PDF | HTML]
Impulsivity and rapid decision-making for reward
Frontiers in Psychology
3: 153. doi:10.3389/fpsyg.2012.00153
(2012)
[PDF | HTML]
Rapid decision-making under risk
Cognitive Neuroscience
3(1): 52–61. doi:10.1080/17588928.2011.613988
(2012)
[PDF | HTML]
Precision of working memory for visual motion sequences and transparent motion surfaces
Journal of Vision
11(14): 2, 1–18. doi:10.1167/11.14.2
(2011)
[PDF | HTML]
Temporal dynamics of encoding, storage and reallocation of visual working memory
Journal of Vision
11(10): 6, 1–5. doi:10.1167/11.10.6
(2011)
[PDF | HTML]
Dynamic updating of working memory resources for visual objects
Journal of Neuroscience
31(23): 8502–8511. doi:10.1523/JNEUROSCI.0208-11.2011
(2011)
[PDF | HTML]
Storage and binding of object features in visual working memory
Neuropsychologia
49: 1622–1631. doi:10.1016/j.neuropsychologia.2010.12.023
(2011)
Special Issue: “Interactions between attention and visual short-term memory (VSTM)”
[PDF | HTML]
Precision versus capacity of working memory in schizophrenic and healthy individuals
Archives of General Psychiatry Online
16 July
(2010)
[PDF]
Integration of goal- and stimulus-related visual signals revealed by damage to human parietal cortex
Journal of Neuroscience
30(17): 5968–5978. doi:10.1523/JNEUROSCI.0997-10.2010
(2010)
[PDF | HTML]
The precision of visual working memory is set by allocation of a shared resource
Journal of Vision
9(10): 7, 1–11. doi:10.1167/9.10.7
(2009)
[PDF | HTML | DATA | TOOLBOX]
Response to comment on “Dynamic shifts of limited working memory resources in human vision”
Science
323: 877. doi:10.1126/science.1166794
(2009)
[PDF | HTML]
Dynamic shifts of limited working memory resources in human vision
Science
321: 851–854. doi:10.1126/science.1158023
(2008)
[PDF+SI | HTML]
Eye movements as a probe of attention
REVIEW
Progress in Brain Research
171: 403–411. doi:10.1016/S0079-6123(08)00659-6
(2008)
[PDF | HTML]
Spatial remapping of the visual world across saccades
REVIEW
Neuroreport
18(12): 1207–1213. doi:10.1097/WNR.0b013e328244e6c3
(2007)
[PDF | HTML]
Computational principles of sensorimotor control that minimise uncertainty and variability
REVIEW
Journal of Physiology
578(2): 387–396. doi:10.1113/jphysiol.2006.120121
(2007)
[PDF | HTML]
Predictive attenuation in the perception of touch
Attention & Performance XXII: Sensorimotor Foundations of Higher Cognition
Oxford University Press (Eds: P Haggard, Y Rosetti, M Kawato)
(2007)
[PDF]
An improvement in perception of self-generated tactile stimuli following theta-burst stimulation of primary motor cortex
Neuropsychologia
45(12): 2712–2717. doi:10.1016/j.neuropsychologia.2007.04.008
(2007)
[PDF | HTML]
Simultaneous bimanual dynamics are learned without interference
Experimental Brain Research
183(1): 17–25. doi:10.1007/s00221-007-1016-y
(2007)
[PDF | HTML]
Attenuation of self-generated tactile sensations is predictive, not postdictive
PLOS Biology
4(2): e28. doi:10.1371/journal.pbio.0040028
(2006)
[PDF | HTML]
Actions and consequences in bimanual interaction are represented in different coordinate systems
Journal of Neuroscience
26(26): 7121–7126. doi:10.1523/JNEUROSCI.0943-06.2006
(2006)
[PDF | HTML]
Evidence for sensory prediction deficits in schizophrenia
American Journal of Psychiatry
162: 2384–2386. doi:10.1176/appi.ajp.162.12.2384
(2005)
[PDF | HTML]
Perception of the consequences of self-action is temporally tuned and event driven
Current Biology
15: 1125–1128. doi:10.1016/j.cub.2005.05.023
(2005)
[PDF | HTML]
Interference between velocity- and position-dependent force-fields indicates that tasks depending on different kinematic parameters compete for motor working memory
Experimental Brain Research
163: 400–405. doi:10.1007/s00221-005-2299-5
(2005)
[PDF | HTML]
Failure to consolidate the consolidation theory of learning for sensorimotor adaptation tasks
Journal of Neuroscience
24(40): 8662–8671. doi:10.1523/JNEUROSCI.2214-04.2004
(2004)
[PDF | HTML]
Two eyes for an eye: The neuroscience of force escalation
Science
301: 187. doi:10.1126/science.1085327
(2003)
[PDF | HTML]