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Computational principles of sensorimotor control that
minimize uncertainty and variability
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Sensory and motor noise limits the precision with which we can sense the world and act upon
it. Recent research has begun to reveal computational principles by which the central nervous
system reduces the sensory uncertainty and movement variability arising from this internal noise.
Here we review the role of optimal estimation and sensory filtering in extracting the sensory
information required for motor planning, and the role of optimal control, motor adaptation and
impedance control in the specification of the motor output signal.
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From a computational perspective, the task of motor
control is to use sensory inputs, which inform us about
the current state of our body and environment, to generate
motor commands that will accomplish a particular goal.
However, in computing this sensorimotor transformation,
the motor system faces substantial challenges. First, the
sensory signals that form the input can be both inaccurate
and variable (‘noisy’), leading to uncertainty in the
estimate of the state. Second, the motor output command
is itself corrupted by noise during its transmission
to the musculature, introducing variability into the
movement. Finally, the environment in which the motor
system operates is variable, changing as we interact with
objects around us, with the result that the sensorimotor
transformation must be frequently updated. Here we
provide an overview of some of the computational
principles which allow human motor control to be
dexterous despite these apparent obstacles.

We begin by reviewing two ways in which the
CNS can minimize uncertainty in the sensory input:
firstly, by combining multiple sensory signals with prior
knowledge to refine sensory estimates; and secondly,
by predictive filtering of the sensory input to remove
less informative components of the signal. Next, we
review how the motor system can select actions so as
to minimize the negative consequences of noise in the
motor output. Finally, we review how motor adaptation
and impedance control can be employed in parallel to
minimize movement errors caused by variability in the
environment.

Sensory noise and optimal integration

Accurate motor control requires precise knowledge of
the state of the body, such as the angular positions
and velocities of the joints. However, the sensory organs
that provide this information have limited resolution,
and the sensory signals they transmit are corrupted by
neuronal noise, with the result that sensory estimates
of state variables are imprecise. State information is
often available in more than one sensory modality. In
estimating the current position of the hand, for example,
the CNS may have access to both visual and proprioceptive
information about its location. Combining these two
sources of information can result in a more precise position
estimate than could be obtained from either source alone.
Specifically, given a visual estimate of location, V , and
a proprioceptive estimate of location, P, a single location
estimate can be obtained by calculating a weighted average
wp P + wvV . If the visual and proprioceptive estimates
are both independently corrupted by Gaussian noise with
variance σ 2

V and σ 2
P, respectively, the optimal estimate

of location is obtained by weighting each source in
proportion to its precision (the inverse of its variance):
wP = σ 2

V/(σ 2
P + σ 2

V) and wV = σ 2
P/(σ 2

P + σ 2
V ) (Clark &

Yuille, 1990; Ghahramani et al. 1997).
Experimentally, the precision of vision and proprio-

ception can be measured by asking subjects to align their
left hand under a table with either a visual target or
a proprioceptive target (their unseen right hand). This
approach reveals proprioceptive localization to be better
in depth and visual localization better in azimuth (van
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Beers et al. 1998), as illustrated in Fig. 1A. The optimal
integration hypothesis therefore predicts that the estimate
of depth should rely more on proprioceptive input and
the estimate of azimuth should rely more on vision
(Fig. 1B). This model has been confirmed by experimental
studies of hand localization in which subjects point to
combined visual and proprioceptive targets (van Beers
et al. 1996, 1999, 2002). Optimal integration has also
been demonstrated in estimating properties of objects,
for example in combining visual and haptic input to
estimate size (Ernst & Banks, 2002), and in integrating
visual texture and motion cues to estimate depth (Jacobs,
1999).

Even when only one source of state feedback is available,
the motor system will generally have prior knowledge that
certain states of the body are more likely than others (for
example that the arms spend more time in front of the
body than behind it). According to the theory of Bayesian
inference, the imperfect estimate of the state obtained from
sensory input can be improved by taking into account the
prior probabilities of different configurations.

In the Bayesian framework, the strength of a belief is
represented by a real number between zero and one, which
reflects the probability that we assign to our belief, e.g.
P(A). Bayes’s rule specifies how to optimally update our

Figure 1. Optimal integration in the estimation of hand position
A, ellipses illustrate the precision of visual (red) and proprioceptive (blue) estimates of hand position in the horizontal
plane. The narrower an ellipse in a certain direction, the more precise the estimate. (Adapted with permission from
Van Beers et al. 2002.) B, the uncertainty in the sensory input can be represented as a probability distribution of
possible locations. In depth (top), the proprioceptive estimate of position (blue) has a lower variance than the visual
estimate (red). When there is a discrepancy between visual and proprioceptive estimates, the optimal combined
estimate is obtained by weighting each source by the inverse of its variance. This combined estimate (green) has
lower variance than either input alone. In azimuth (bottom), the relative precision of vision and proprioception is
reversed, with the result that the optimal estimate now relies more on vision than proprioception. C, an estimate of
position obtained from visual input alone can be improved by combining it with knowledge of a prior distribution
of probable positions. The extent to which this prior distribution (grey) influences the optimal position estimate
depends on the variance in the visual input. When visual feedback is very precise (top), the prior distribution has
little effect, but when the variance of the visual estimate is increased (bottom), the optimal estimate becomes
biased towards the mean of the prior distribution.

beliefs as new information becomes available:

Posterior
︷ ︸︸ ︷

P(state|sensory input) =

Likelihood
︷ ︸︸ ︷

P(sensory input|state)

Prior
︷ ︸︸ ︷

P(state)

P(sensory input)

Here, P(state) reflects our prior belief in a particular
state of the world before the sensory input is received. In
order to integrate the new sensory information with this
prior belief, Bayes’s rule states that one should calculate
the likelihood of the state: the probability of the sensory
input given the hypothesized state, P (sensory input|state).
This reflects how probable it is that we would receive,
for example, the current proprioceptive input given a
particular arm configuration. By multiplying the prior
by the likelihood and normalizing (scaling so that the
sum of the probabilities over all possible states sum to
one) we can estimate the probability of the state given
the sensory input, termed the posterior of the state. This
posterior now becomes our new prior belief and can be
further updated based on new sensory input. As when
combining multiple sensory inputs, this method effectively
weights the two sources of information, the prior and
the likelihood, according to their precision (Cox, 1946;
Bernado & Smith, 1994).
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Bayesian inference has recently been demonstrated
in a study in which subjects made online corrections
to a reaching movement based on momentary visual
feedback of hand position (Kording & Wolpert, 2004a).
This visual feedback, presented midway through the
movement, was displaced laterally by a distance that
varied from trial to trial. The range of displacements
experienced over the course of many trials formed a prior
probability distribution. According to the Bayesian model,
this prior distribution can be combined with the feedback
on a given trial to provide an optimal estimate of the
position error. For movements in which very precise visual
feedback was given, this prior distribution of
displacements had little influence on the estimate
of hand position, which was based almost entirely on
the visual feedback from the current trial (Fig. 1C,
top). However, when the visual feedback was artificially
degraded, the state estimate became increasingly biased
towards the mean of the prior distribution, as predicted
by a Bayesian model (Fig. 1C, bottom). This suggests that
the CNS internally represents both the prior statistics
of the environment and the uncertainty in its sensors,
and can combine these two sources of information in an
optimal fashion.

Several computational schemes have been proposed by
which a population of neurons could represent uncertainty
and thereby compute in a Bayesian manner (Knill &
Pouget, 2004). One proposal is that each neuron in a
population codes for a particular value of an estimated
parameter, such as hand position, and the activity across
the population explicitly represents the probability of the
different values using a convolution code (Zemel et al.
1998). Alternatively, in a gain encoding scheme the peak
activity of a population reflects the estimate and the firing
rate indicates the uncertainty, increasing with decreasing
variance in the estimate (Pouget et al. 2003). However,
there is currently little direct evidence for either of these
models.

Reafference as ‘noise’ and sensory filtering

We have discussed how sensory input is corrupted by
neuronal noise, and how the resulting uncertainty can
be minimized by the CNS. From the point of view of
generating estimates about the outside world, sensory
input is further corrupted by reafference: changes to
the sensory input that result solely from our own
actions (Sperry, 1950; Von Holst & Mittelstaedt, 1950;
Von Holst, 1954). A number of filtering mechanisms
have been proposed that attenuate or remove this
self-generated input from the incoming sensory stream,
thereby enhancing the processing of external events.

An example of sensory filtering that has been widely
investigated is the reduction in tactile sensitivity observed
during movement of a digit or limb (Angel & Malenka,

1982; Chapman et al. 1987; Milne et al. 1988). A
possible neural mechanism for this movement-related
gating has been identified in primates by Seki et al.
(2003). They observed reduced activation of spinal
interneurons by primary tactile afferents in the superficial
radial nerve during an active wrist movement. The most
likely mechanism was identified as presynaptic inhibition
of the primary afferents (Eccles et al. 1961; Miller, 1998)
resulting from a central command signal. The theory that
sensory gating is triggered by descending signals from
motor planning areas is supported by a recent study by Voss
et al. (2006). Pulses of transcranial magnetic stimulation
(TMS) over primary motor cortex were used to delay
planned finger movements at the motor output stage.
Sensory suppression of cutaneous stimuli was observed
at the intended time of movement, despite this being
substantially prior to the actual onset of the movement.

While movement-related gating filters out sensations
resulting from voluntary movement, it also removes
externally generated sensations that are unrelated to
the movement. Von Holst (1954) and Sperry (1950)
proposed a more specific mechanism of sensory filtering
that leaves external input intact. According to this
model, self-generated sensations are predicted based
on an ‘efference copy’ of the motor command. By
subtracting this prediction from the incoming sensory
stream, the self-generated component can be removed.
Modern formulations of this theory (illustrated in Fig. 2A)
include a forward model: an internal representation of
the environment that is used to transform the efference
copy signal into a sensory prediction (Jordan & Rumelhart,
1992; Wolpert & Miall, 1996; Davidson & Wolpert, 2005).

This kind of predictive cancellation has been observed
in the electrosensory systems of electric fish (Bell, 2001).
Electric fish possess both electroreceptors for sensing
current and electric organs driven by motor commands
for discharging current. To prevent the discharge of a
fish’s own electric organs interfering with its ability to
sense its surroundings, the self-generated component is
removed from the output of electrosensory cells by an
adaptive predictive mechanism. Bell (1981, 1982, 1986)
blocked the electric organs of mormyrid fish with curare,
and then delivered an artificial electrical stimulus every
time the fish generated a discharge motor command. At
first, the artificial stimuli produced substantial activation
in neurons receiving electrosensory input, but these
responses were greatly attenuated after a few minutes
of consistent pairing of the stimulus with the motor
command. When the artificial stimuli were subsequently
stopped, a negative image of the expected activation was
observed in response to each motor command: a clear
indication of predictive cancellation as proposed by Sperry
and Von Holst.

Sensory cancellation has also been observed in
the primate vestibular system. A subclass of neurons
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within the vestibular nucleus receives input from the
semicircular canals, and projects to spinal motor neurons
that innervate muscles in the neck. These ‘vestibular-only’
neurons mediate a reflex which generates compensatory
muscle responses in response to head motion, stabilizing
the head in space. While beneficial at rest, this reflex would
be inappropriate during active head movements, and
these neurons receive a cancellation signal that attenuates
responses to active movements (McCrea et al. 1999; Roy &
Cullen, 2001, 2004).

In humans, a cancellation mechanism may be
responsible for the attenuation of tactile sensations that
occur as a result of one body part touching another
(Shergill et al. 2003). If subjects are instructed to reproduce
an externally applied pressure on one finger by pressing
with a finger of the other hand, they consistently
overestimate the force required (Fig. 2B, blue circles).
This effect is not observed when subjects reproduce
the force indirectly, by controlling the pressure on the
finger via a joystick (Fig. 2B, blue squares). This implies
that the sensation in the passive finger is perceived as
substantially weaker when it is directly self-generated than
when it is externally applied. Unlike a gating process, this
attenuation has been shown to depend on a spatially and
temporally precise prediction of the self-generated sensory
input (Blakemore et al. 1999a; Bays et al. 2005, 2006).
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Figure 2. Predictive filtering of self-generated sensation
A, schematic representation of a sensory cancellation mechanism. On the basis of efference copy, a forward model
predicts the sensory feedback that will result from a planned action. Subtracting this prediction from the actual
sensory input reveals an estimate of the sensory feedback due to external influences. B, performance of healthy
subjects (blue) and schizophrenic patients (red) on a force-matching task. Subjects were instructed to reproduce
a target force, applied to the left index finger by a torque motor, either directly by pressing with the right index
finger (circles) or indirectly by controlling the torque motor output with a joystick (squares). Average matching
force is shown as a function of target force. Error bars indicate ± 1 S.E.M. across subjects. Dashed line represents
perfect performance. Adapted with permission from Shergill et al. (2005).

The type of mechanism illustrated in Fig. 2A may also
underlie our ability to distinguish between our own actions
and external events. Sensory feedback from our own
actions should closely match the feedback predicted on
the basis of efference copy, whereas external influences can
be identified by large discrepancies between predicted and
actual feedback. Many of the symptoms of schizophrenia,
such as auditory hallucinations and delusions of control,
appear to involve patients incorrectly identifying their
own actions as having an external source. This has led
to the suggestion that schizophrenia results in part from
a deficit in predicting the sensory consequences of one’s
actions (Feinberg, 1978; Frith, 1992; Frith et al. 2000).
Consistent with this theory, patients with schizophrenia
show less attenuation of self-generated sensation than
controls (Blakemore et al. 2000; Shergill et al. 2005),
performing substantially better on the force reproduction
task than healthy subjects (red circles, Fig. 2B).

Converging evidence from theoretical, neuro-
physiological, and functional imaging studies suggests
a role for the cerebellum in sensory filtering. In electric
fish, the neurons identified as sites of attenuation are
found in the electrosensory lobes, regions with a strong
anatomical similarity to the cerebellum. These neurons
receive projections carrying both proprioceptive input
and central input related to the motor command.
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Adaptation of the predictive cancellation signal has been
shown to result from plasticity at these synapses (Bell et al.
1993). Similarly, the primate ‘vestibular-only’ neurons
described above are thought to receive projections from
the nodulus-uvula region of the cerebellum (Xiong &
Matsushita, 2000).

In humans, functional imaging studies support a role
for the cerebellum in tactile attenuation (Blakemore et al.
1998, 1999b). Activity in the right anterior cerebellar cortex
is reduced when a tactile stimulus is self- rather than
externally generated. This may reflect the generation of a
predictive cancellation signal in cerebellar areas ipsilateral
to the active hand. These studies revealed a significant
correlation between activation in the cerebellum and the
somatosensory cortex, but only for self-generated stimuli.
This is again consistent with modulation of the input to
sensory areas by a signal originating in the cerebellum.

The involvement of cerebellar areas in sensory
attenuation is consistent with proposals that the
cerebellum is a component of the forward model system
that predicts the consequences of planned actions (Ito,
1970; Miall et al. 1993; Wolpert & Kawato, 1998). The
physiological structure of the cerebellum makes it a strong
candidate for learning and maintaining internal models.
Purkinje cells, the only output neurons from the cerebellar
cortex, receive synaptic inputs from parallel fibres and
climbing fibres. Parallel fibres originate in granule cells
which transmit input from association areas of the cerebral
cortex. Parallel fibres may make as many as 200 000
synapses on a single Purkinje cell (Ito, 1984), and it has
been proposed that the complex transformation from
parallel fibre input to Purkinje cell output may implement
an internal model. To implement a forward model, this
theory proposes that parallel fibre inputs carry an efference
copy of the motor command, and the Purkinje cell output
signals predicted sensory feedback (Miall et al. 1993).

Motor noise and optimal control

In addition to the problems of interpreting noisy sensory
input, the motor system must also contend with neuronal
noise in the motor output. Over the normal force range
of movement, the total noise affecting the activation of
each muscle is not constant, but increases approximately
linearly with the amplitude of the motor command
signal (Schmidt et al. 1979; Meyer et al. 1988). This
signal-dependent noise results directly from the physio-
logy of the motor pool, in which motor-units are recruited
in order of increasing twitch amplitude (Jones et al. 2002;
Hamilton et al. 2004). Each activated motor-unit has some
variance in its firing rate, and the total variance is the sum
of the individual variances of all the recruited units. The
effect of this noise is to make movements variable.

It is naturally desirable for planned movements to be
carried out accurately, and it has been suggested that

movement variability is minimized by taking advantage
of the redundancy in the motor system (Harris & Wolpert,
1998). Any motor task can in theory be achieved by
an infinite number of possible trajectories, movement
durations, and levels of muscle cocontraction. Despite
this redundancy, human movement patterns are highly
stereotyped (Bahill et al. 1975; Morasso, 1981; Lacquaniti
et al. 1983). This consistency is characteristic of a
computational approach known as optimal control, in
which a ‘cost’ is specified as a function of the movement,
and the motor output with the lowest cost selected (Bryson
& Ho, 1975; Harris, 1998).

Costs have been proposed that can reproduce a range
of empirical data, e.g. arm movement data can be
modelled by minimizing the jerkiness of the hand (Flash
& Hogan, 1985) or minimizing the rate of change
of torques at the joints (Uno et al. 1989). However,
the issue of movement variability has generally been
overlooked. Recently, stochastic optimal control models
have been developed which explicitly take account of
the noise in the motor command. For example, optimal
control models that minimize endpoint variability under
signal-dependent noise accurately reproduce the observed
temporal profiles of both arm reaching movements
and saccadic eye movements (Harris & Wolpert, 1998),
and predict the way in which feedback is used to correct
movements online (Todorov & Jordan, 2002). The choice
of endpoint variability as a cost has several advantages over
previous proposals: it is easy to compute from sensory
feedback, as the CNS needs only to monitor errors at the
end of a movement rather than integrating a quantity such
as jerk or torque change over the movement, and unlike
these other measures, endpoint variability has obvious
behavioural relevance.

Although minimizing variability can account for a range
of movement data there are other factors that can also be
included in the overall cost, such as movement duration
and energy. The relative weighting of different components
within the cost may well vary across different tasks and
types of movement. For example, successful models of
walking have been developed based on minimizing energy
(Srinivasan & Ruina, 2006), while it is possible to model
the saccadic main sequence, the relation between saccadic
amplitude and duration, by minimizing a cost which
combines both movement duration and eye movement
variability (Harris & Wolpert, 2006).

Whichever parameter is chosen to determine the cost,
almost all optimal control models assume a cost function
that minimizes the square of that parameter. To take the
example of endpoint error, this means that a 2 cm error
carries four times the cost of a 1 cm error. However, as
illustrated in Fig. 3A, alternative cost functions can be
hypothesized, such as a cost proportional to the absolute
error, or a function that punishes all non-zero errors
equally. The form of the cost function has recently been
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investigated in a study by Kording & Wolpert (2004b).
Subjects attempted to align their hand with a target under
an experimentally imposed visual error. The statistical
distribution of this visual error was asymmetric, with the
result that the optimal alignment of the hand with the
target depended on the cost function. For example, it can
be shown that to minimize the absolute error, the median
of the distribution must be aligned with the target, whereas
to minimize the squared error, the mean of the distribution
should be aligned (Fig. 3B). The results of this study reveal
a cost function that is proportional to the squared error for
small errors, but increases more slowly than the squared
error for larger errors (Fig. 3C). Models that assume a
squared error are therefore good approximations, but the
motor system is less influenced by outliers than these
models predict.

Variability in the environment, motor adaptation,
and impedance control

Optimal control models generally define an optimal
trajectory but not how that trajectory should be achieved.
The muscle activations required to generate a given
limb movement depend on the dynamics of the limb
and the environment in which it moves. One of the
biggest challenges facing the motor system is coping with
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Figure 3. Cost functions for optimal control
A, optimal control models attempt to minimize a specified ‘cost’, such as the error in position at the end of a
movement. Cost functions are shown that minimize different features of position error: the squared error (top),
the absolute error (middle), or the number of misses (i.e. non-zero errors, bottom). B, one of the asymmetric
probability distributions of position used in Kording & Wolpert (2004b). Vertical lines indicate the point in the
distribution that should be aligned with the target in order to minimize each of the cost functions shown in A.
C, the continuous black line indicates the cost function inferred from the results of Kording & Wolpert (2004b);
the grey area represents ± 1 S.E.M. across subjects. The squared error is shown for comparison (red dashed line).
Adapted with permission from Kording & Wolpert (2004b).

variability in these dynamics. Changes can occur over long
time periods due to developmental changes in the length
of limb segments and the size and strength of muscles, but
also on much shorter time scales as a result of interactions
with the environment, such as when manipulating a tool.

A computational approach that is well-suited to dealing
with such changes is the inverse model, an internal
representation of the dynamic environment that is used
to compute motor command signals to produce a desired
movement (Kawato et al. 1987; Wada & Kawato, 1993;
Jordan, 1995). When the dynamics change, for instance
when we pick up an object, the inverse model no longer
captures the dynamic properties of the system, resulting in
inaccurate movements. However, these movement errors
can be transformed into a training signal that may be used
to adapt the inverse model until it correctly represents the
new dynamic environment (Kawato et al. 1987; Jordan &
Rumelhart, 1992).

Experimentally, this kind of motor adaptation has
been studied by applying state-dependent forces to
the arm during reaching movements, either via a
robotic manipulandum held in the hand (Shadmehr &
Mussa-Ivaldi, 1994), or by rotating the subject and thus
inducing Coriolis force in the moving arm (Lackner &
Dizio, 1994). On initial exposure these force fields cause
large deviations in arm trajectory, followed by corrective
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movements to reach the target (Fig. 4A, top). However,
with practice hand paths gradually become straighter and
approach the pre-exposure trajectory (Fig. 4A, bottom),
implying that the motor system has integrated the external
forces into its internal model of dynamics. If the force is
unexpectedly absent on a movement, a large deviation of
the hand path is observed in the opposite direction to the
earlier errors, confirming that the motor system is actively
compensating for the expected external force.

Neuronal correlates of motor adaptation have been
observed in primary motor cortex (M1). In primates,
adaptation to a novel force field at the hand is accompanied
by changes in preferred direction of neurons in the arm
area of M1 (Gandolfo et al. 2000). Following adaptation,
the shift in preferred direction at the population level
matches the shift in muscle activity required to compensate
for the force field (Li et al. 2001). These neuronal changes
outlast the exposure to the perturbation, consistent with
our ability to recall previously learned dynamics even
after a gap of several months (Brashers-Krug et al. 1996;
Gandolfo et al. 1996).

In humans, several imaging studies support cerebellar
involvement in acquiring new inverse models (Imamizu
et al. 2000; Nezafat et al. 2001). From a theoretical
standpoint, the aspects of the cerebellum’s structure and
connectivity that make it a candidate for maintaining
forward models also make it an ideal neural basis for
inverse models. According to one model, parallel fibre
inputs to the cerebellum signal desired movement goals,
and the Purkinje cell output signals the error in the current
motor output, with the inverse model implemented by
the parallel fibre-Purkinje cell synapses (Kawato, 1999).
The efficacy of these synapses appears to be modulated by
input from climbing fibres, originating in the inferior olive,
via long-term depression (Marr, 1969; Albus, 1971; Fujita,
1982; Ito, 2001). Electrophysiological studies in primates

Figure 4. Motor adaptation and impedance control
during reaching movements
A, typical hand trajectories for out-and-back
movements to targets (red) on first exposure to a
velocity-dependent force field (top) and after 20
movement blocks (sets of 8 targets) in the field
(bottom). Arrows (green) indicate the direction of force
during outward movement. The increase in movement
accuracy with training results from a strategy of motor
adaptation, in which appropriate forces are generated
to counteract the predictable force field. B, hand
trajectories on first exposure to a divergent force field
(top left), and after 100 movements in the field (top
right). In this unpredictable force field, increased
movement accuracy reflects a strategy of impedance
control. Stiffness ellipses (bottom) indicate restoring
force to a step displacement of the hand in different
directions, before and after training. The increase in
stiffness is tuned to the direction of maximum instability,
perpendicular to the direction of motion (black arrow).
Adapted with permission from Burdet et al. (2001).

have observed increased climbing fibre activity during
initial movements under a novel load or changed visual
feedback (Gilbert & Thach, 1977; Ojakangas & Ebner,
1992). These and other studies (e.g. Gellman et al. 1985;
Andersson & Armstrong, 1987) suggest that climbing fibre
inputs signal discrepancies between expected and actual
sensory input. Climbing fibre input may therefore act
as a training signal which, via plasticity of the parallel
fibre-Purkinje cell synapses, adapts the inverse model to
minimize errors in prediction.

The cerebellar architecture appears to be highly modular
(Oscarsson, 1979; Bower & Woolston, 1983), so it is
possible that the cerebellum implements many forward
and inverse models simultaneously (Wolpert & Kawato,
1998; Wolpert et al. 1998; Haruno et al. 2001). In an
fMRI study in which subjects learned to switch between
two different sensorimotor transformations, cerebellar
activation became localized in different areas under the
two different transformations (Imamizu et al. 2003).
This may reflect the acquisition of distinct internal
models implemented in spatially segregated regions of the
cerebellum’s modular architecture.

While adaptation of the inverse model is a viable strategy
when the dynamics of the environment vary predictably,
we often engage in tasks in which this is not the case. For
example, when drilling into a wall with an electric drill,
the aim is to keep the drill bit perpendicular to the wall.
However, small deviations in the angle of the drill bit to
the wall produce forces that tend to destabilize the posture
(Rancourt & Hogan, 2001). As these small deviations may
result from motor output noise alone, it is not possible
for the motor system to predict the forces that will act
on the hand. In this situation stability can be improved
by cocontracting the muscles in the arm, increasing the
stiffness (‘impedance’) at the hand and so reducing the
effect of the destabilizing forces. This impedance control
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strategy was investigated by Burdet et al. (2001) by asking
subjects to make reaching movements in a destabilizing
force field generated by a robotic manipulandum (Fig. 4B,
top). Deviations of the hand from a straight line resulted
in forces on the hand in the same direction, creating an
unstable dynamic environment. After initial errors, sub-
jects responded by cocontracting muscles in the arm in
such a way as to increase stiffness only in the direction
perpendicular to motion, i.e. in the direction of the
external force (Fig. 4B, bottom). Compared to stiffening
equally in all directions, this task-specific control strategy
not only decreases metabolic cost, but may also increase
movement accuracy, as motor output noise increases with
muscle activation.

Impedance control can be a valuable strategy even
when faced with a predictable dynamic environment. In
the initial stages of exposure to a novel force field, sub-
jects respond by cocontracting arm muscles to increase
stiffness; as adaptation progresses, high stiffness becomes
unnecessary and levels of cocontraction systematically
decrease (Thoroughman & Shadmehr, 1999; Wang et al.
2001). Even when dealing with a known dynamic
environment, such as when manipulating a familiar object,
uncertainty in state estimation means that compensation
based on an inverse model will always be imperfect. The
motor system’s response to such uncertainty has been
investigated using force fields that vary in strength from
movement to movement. If the field strength on each
movement is drawn from a Gaussian distribution, sub-
jects learn to compensate for the mean force experienced
over the previous few trials, while increasing stiffness
to counteract the effects of variability about the mean
(Scheidt et al. 2001; Takahashi et al. 2001). The two
control strategies of motor adaptation and impedance
control are therefore employed in parallel to minimize
the effects of uncertainty and variability in the dynamic
environment.

Conclusions

In this brief review we have introduced some of the
computational principles revealed by the experimental
study of motor control. Recent approaches have begun
to emphasize that noise in sensory inputs and motor
outputs as well as uncertainty about the environment
are crucial in determining neural processing. Two broad
classes of computational approach have emerged as
pre-eminent. First, the principle of optimality has been
shown to play a role both in minimizing uncertainty
in sensory estimation, through optimal integration and
Bayesian inference, and in minimizing variability in motor
output, through optimal control. Second, internal models
are implicated both in filtering sensory inputs, using
sensory predictions generated by the forward model,
and in minimizing movement errors due to variability

in the environment, through adaptation of the inverse
model.

While great advances have been made in our under-
standing of these topics at a computational level, our
knowledge of the underlying neurophysiology is much less
complete. In particular, we currently have very little idea
how the algorithms underlying optimal integration and
optimal control are realized at the neuronal level. It is to be
hoped that future research will reveal a unifying framework
in which both the computational and physiological bases
of sensorimotor control can be understood.
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