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The mechanisms underlying visual working memory have recently become controversial. One account proposes a small
number of memory “slots,” each capable of storing a single visual object with fixed precision. A contrary view holds that
working memory is a shared resource, with no upper limit on the number of items stored; instead, the more items that are
held in memory, the less precisely each can be recalled. Recent findings from a color report task have been taken as crucial
new evidence in favor of the slot model. However, while this task has previously been thought of as a simple test of memory
for color, here we show that performance also critically depends on memory for location. When errors in memory are
considered for both color and location, performance on this task is in fact well explained by the resource model. These
results demonstrate that visual working memory consists of a common resource distributed dynamically across the visual
scene, with no need to invoke an upper limit on the number of objects represented.
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Introduction

Understanding the nature of visual working memoryV
sometimes referred to as visual short term memory
(VSTM)Vis fundamental to understanding aspects of
visual perception (O’Regan, 2001; Simons & Rensink,
2005), attention (Awh & Jonides, 2001; Bundesen &
Habekost, 2008; de Fockert, Rees, Frith, & Lavie, 2001;
Lepsien & Nobre, 2007; Soto & Humphreys, 2006), and
integration of visual information across eye movements
(Henderson, 2008; Irwin, 1991). Deficits in visual working
memory have also been linked to damage to parietal and
frontal brain regions and are associated with disorders of
visual perception and attention (D’Esposito & Postle, 1999;
Logie & Della Sala, 2005; Mannan et al., 2005; Müller &
Knight, 2006). Thus, the mechanisms underlying visual
working memory are central to understanding several key
brain functions and their disorders.

A long-standing model of visual working memory
holds that three or four independent memory “slots” each
store information about a single visual item (Cowan, 2005;
Luck & Vogel, 1997; Pashler, 1988; Vogel, Woodman, &
Luck, 2001). However, this assumption of independent
storage has recently been challenged by studies examining
the precision with which items are recalled. This new
approach has revealed that the resolution with which a

visual item is maintained depends critically on how many
other items are concurrently held in memory (Alvarez &
Cavanagh, 2004; Awh, Barton, & Vogel, 2007; Bays &
Husain, 2008; Wilken & Ma, 2004), such that increasing
numbers of objects are stored with increasing variability
(“noise”). For a simple “slot” model, in contrast, the
number of items to be remembered should not influence
performance until the capacity limit is exceeded.

An alternative account proposes that a single memory
resource must be shared out between visual items.
According to this hypothesis, the precision with which
an item is stored is determined by the fraction of total
resources allocated to it (Bays & Husain, 2008). As more
items are stored, less resource is available per item, so the
resolution with which each object is stored decreases.
Unlike the slot model, this resource model does not
predict any fixed upper limit on the number of items
stored. Indeed, the resource model successfully predicts
the appearance of a capacity limit in change detection
tasks, which was previously taken as evidence for a fixed
number of slots. Moreover, by allowing the resource to be
flexibly distributed between items, it can also explain how
visually salient items, or those that are the targets of
forthcoming eye movements, are remembered with
enhanced precision (Bays & Husain, 2008).

However, in a recent study, Zhang and Luck (2008)
presented results from a color report task (previously
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described byWilken &Ma, 2004), which appear to provide
important new evidence in favor of the fixed slot model.
They observed responses on the report task that could not
be explained by simple variability in memory for color. In
their analysis, these apparently random responses were
interpreted as evidence for a fixed upper limit on the
number of items that can simultaneously be held in visual
working memory. According to the authors, the error
distribution on such a task comprises a mixture of two
components: a Gaussian centered on the correct color of the
probed item and a uniform distribution (due to “guessing”)
spread equally over all possible responses. Zhang and Luck
propose that this latter random component corresponds to a
proportion of trials on which no information is stored about
the target color, as the result of exceeding an upper limit on
the number of items that can be maintained.

This paradigm provides a crucial test for slot versus
resource models of working memory. Here we examine the
requirements of the report task in detail. While previously
considered a simple test of memory for color, we show that
performance also depends critically on memory for object
locations. Because locations, like colors, are stored with
error, the resource model in fact predicts the “random”
responses observed by Zhang and Luck (2008), without any
need to invoke an upper limit on items stored. We
demonstrate a further component of error on the task
related to the duration of exposure to the stimulus, revealing
a separate performance limit that may reflect a maximum
rate at which items can be encoded into memory. These
findings challenge the view that a fixed number of object
representations underlies visual working memory.

Methods

Experimental protocol

Twelve subjects (sevenmale, five female; age 18–28 years)
participated in the study after giving informed consent. All
subjects reported normal color vision and had normal or
corrected-to-normal visual acuity. Stimuli were displayed
on a 21-in. CRT monitor at a viewing distance of 60 cm.
Eye position was monitored online at 1000 Hz using a
frame-mounted infra-red eye tracker (SR Research Ltd.,
Canada). The design of the experiment was identical to that
described in Zhang and Luck (2008) with the following
modifications: fixation was monitored; we chose a more
evenly spaced set of array sizes; and we tested perfor-
mance at a range of different durations of the sample array.
Each trial began with the presentation of a central fixation

cross (white, 0.75- diameter) against a gray background.
Once a stable fixation was recorded within 2- of the cross, a
sample array was presented, consisting of 1, 2, 4, or 6
colored squares (2- � 2-). Each color was independently
chosen at random from a color wheel comprising a circular

subset of the CIE L*a*b* color space (for full details, see
Zhang & Luck, 2008). Each square was randomly posi-
tioned at one of eight possible locations on an invisible
circle, radius 4.5-, centered on the fixation cross. The
sample array was presented for 100, 500, or 2000 ms,
followed by a delay period of 900 ms in which the display
was blank except for the fixation cross. A test array was
then presented containing the color wheel (randomly
rotated) and an outlined square at the location of each item
from the sample array. One target location was indicated by
a thicker outline, and subjects were instructed to report the
color they remembered seeing at that location by using a
computer mouse to select a point on the color wheel.
Each subject completed a total of 600 trials. The four

different array sizes were tested in separate blocks of trials,
with the order of completion randomized between subjects.
Each block consisted of 50 trials at each of the three different
display times, presented in a randomized sequence. Trials
were repeated if gaze deviated more than 2- from the central
cross during presentation of the sample array.

Analysis

A measure of error was obtained on each trial by
calculating the angular deviation on the color wheel
between the color reported by the subject and the correct
target color. For each combination of subject and array
size, we calculated precision as the reciprocal of the
standard deviation of the error, as in Bays and Husain
(2008). Because the tested parameter space was circular,
we used the definition of standard deviation for circular
data given by Fisher (1993) and subtracted from the
precision estimate the value expected by chance (i.e., if
the subject had responded at random on each trial).
In previous results (Bays & Husain, 2008), a power law

was found to accurately capture the relationship between
the precision with which an item is stored (P) and the
fraction of memory resources available to store it (R). We
fit the same model to the results from the current task:
P ò R1, where R = 1/N is simply the reciprocal of the
number of items in the sample array. The curve shown in
Figure 1b corresponds to the mean parameters obtained by
a non-linear least squares fit to each subject’s data. This
estimate of precision simply reflects the degree of
variability in subjects’ responses and hence is agnostic
as to the distribution and source of these errors.
A probabilistic model of performance on this task has

previously been proposed (Zhang & Luck, 2008) in which
there are two possible sources of error on each trial:
Gaussian variability in memory for the target color and a
fixed probability of simply guessing at random. This
model can be described as follows:

p
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Ê
� ¼ 1j+ð Þ7A

�
ÊjE
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where E is the target color value (in radians), Ê is the
reported color value, and + is the proportion of trials on
which the subject responds at random. 7A denotes the
circular analogue of the Gaussian distribution (the Von
Mises distribution) with mean of zero and standard
deviation A.

In this study, we propose an additional source of error: a
certain probability on each trial of misremembering which
item was at the probed location. On these trials, responses
are drawn from a Gaussian distribution centered on the
color value of one of the non-target items. The standard
deviation of this Gaussian will be the same as for

Figure 1. Precision of visual working memory in a color report task. (a) Subjects were briefly presented with a sample array of 1–6 colored
squares; exposure duration was varied across trials (100–2000 ms). After a blank period (900 ms), a test array was presented in which
the location of a randomly selected sample item was highlighted. Subjects reported the remembered color corresponding to the
highlighted location by clicking on a color wheel. (b) Precision as a function of the number of items in the sample array (N). Precision is
defined as the reciprocal of the standard deviation of the error in subjects’ responses: zero indicates chance performance. Error bars
indicate SEM. The blue line indicates the best fit to the data of a power law relating precision to the fraction of resources available per item
(1/N). (c) Three models for the distribution of responses on the color report task, illustrated for a single trial with a sample array of two
items (one red, one green) and a test array that cues the location of the red item. Variability in memory for color alone would predict a
Gaussian distribution of responses centered on the actual color at the target location (top). In the model proposed by Zhang and Luck
(2008) (middle), a proportion of responses instead come from a uniform distribution in which colors are chosen at random (shown in
green). Alternatively (bottom), variability in memory for location may cause subjects to mistake which item was at the target location on
some trials, in which case a proportion of responses (shown in green) will come from a Gaussian centered on the non-target color.
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responses to the target item: target and non-target colors
will on average be stored with the same precision because
it is not known at the time of encoding which item will
become the target. To assess the contribution of this addi-
tional source of error to subjects’ responses, we added a
third component to the model:

p
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where " is the probability of misremembering the target
location and {E*1, E*2,IE*m} are the color values of the m
non-target items. Maximum likelihood estimates of the
parameters A, ", and + were obtained separately for each
subject and experimental condition using a non-linear
optimization algorithm (Nelder & Mead, 1965). The
optimization procedure was repeated from a range of
different initial parameter values to ensure that global
maxima were obtained. For comparison purposes, we also
fit Zhang and Luck’s two-component model (Equation 1
above) to our data using the same procedure.
Hypotheses regarding the effects of experimental

parameters (array size, exposure duration) on the different
components of the model were tested by ANOVA and
t-tests on the maximum likelihood parameters obtained for
each subject and condition.

Results

The color report task is illustrated in Figure 1a. On each
trial, a subject is briefly presented with an array of colored
squares surrounding a central fixation point. After a short
blank period, one array location is highlighted and the
subject must report the color that was at that location (the
target color) by clicking at the appropriate position on a
color wheel. The angular deviation on the wheel between
the selected and the target color values is taken as a
measure of the error in the subject’s memory for the
sample display.
The overall pattern of performance we observed on this

task (Figure 1b) reveals that the precision with which each
item is recalled falls significantly with increases in the
number of objects presented (t(11) 9 5.5, p G 0.001). Note
that performance falls even when the number of items
increases from one to two, inconsistent with a model in
which each item is stored in a separate “slot.” The
observed rate of decline in precision (falling by 49%
between one and two items) is also significantly greater
(t(11) = 5.0, p G 0.001) than predicted by averaging of
multiple slots storing the same item (29%; see Zhang &
Luck, 2008). Performance remained above chance (indi-
cated by zero precision in Figure 1b) at all sample sizes

tested (t(11) 9 8.9, p G 0.001) and for every individual
subject.
The results are accurately captured by a power law

relating precision to the proportion of resources available
per item (Figure 1b, blue line; see Methods). These
findings are consistent with a resource model in which the
precision with which a visual item is remembered depends
on the fraction of total working memory resources
allocated to its storage. So, as the number of items in the
display increases, the precision with which any individual
item is remembered will decrease. The power function is
also consistent with previous results for memory of visual
locations and orientations (Bays & Husain, 2008).
Zhang and Luck (2008) did not show the overall

performance of subjects in this way. Instead they
presented their data in terms of two distinct components
that might underlie errors on this task. The first compo-
nent corresponds to errors in the internal representation of
a stored color. This internal error should be distributed as
a Gaussian, with decreasing precision corresponding to an
increase in the Gaussian width (Dayan & Abbott, 2001;
Seung & Sompolinsky, 1993; Vogels, 1990). Assuming
the sequence of colors on the color wheel is approx-
imately isomorphic with the internal representation of
color space, we would expect a similar distribution to be
found in subjects’ responses on the color task (as
illustrated in Figure 1c, top).
Figure 2a shows the distribution of errors on our task

obtained for sample arrays of one to six items. When only
a single item has to be remembered (far left), responses
indeed take on an approximately Gaussian distribution.
However, as Zhang and Luck (2008) observed, this simple
description does not fully capture responses on this task
when there are multiple items in the sample array. While
the central portion of the distribution remains approx-
imately Gaussian for larger sample sizes (e.g., six items,
far right), the probability of the largest errors does not fall
to zero as expected. To account for this, Zhang and Luck
invoked a second “guessing” component, corresponding to
a proportion of trials on which no information is stored
about the target color, as a result of exceeding an upper
limit on the number of items that can be stored. Thus, they
modeled their data as a Gaussian centered on the correct
color of the target item (shown in blue in Figure 1c,
middle panel) and a uniform (guessing) distribution spread
equally over all possible responses (green in Figure 1c).
However, this interpretation overlooks a crucial aspect

of the color report task. Because a subject’s response is
cued by indicating the previous position of one of the
array items, the task requires subjects to remember not
only the color of each item in the sample array, but also its
location. A resource model predicts error in the stored
representations of both color and position. When the probe
is presented, subjects must compare its location with the
location of each array item held in memory to determine
which item’s color they should report. Errors in memory
for item locations will therefore result in subjects
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incorrectly responding with the remembered color of one
of the non-target items.
The consequences of this are illustrated in Figure 1c

(bottom), for the simple case in which two items are
presented. The uncertainty in color will again result in a
Gaussian distribution of error (shown in blue) centered on
the target color value. The uncertainty in location will
result, on a certain proportion of trials, in responses
corresponding to the remembered color of the other, non-
target item: these responses will be described by a second
Gaussian distribution of responses (green) centered on the
non-target color.
Because the array colors are selected at random, all

relative positions of target and non-target colors on the
color wheel are equally likely. Therefore, if error is
calculated relative to the target color on each trial (as in
Figure 2a; Zhang & Luck, 2008), responses due to errors
in memory for location will be scattered evenly across the
color wheel, resulting in an error distribution indistin-
guishable from the one predicted by Zhang and Luck’s
(2008) model (Figure 1c, middle). However, the two
alternatives can easily be distinguished by instead calcu-

lating the frequency of responses relative to the non-target
color values on each trial. Because non-target and target
color values are uncorrelated, Zhang and Luck’s model
predicts that this distribution will be uniform.
Figure 2b shows the results of this analysis on our task:

as predicted by the resource model, responses centered on
the color values of non-target items are more frequent
than expected by chance, and this central tendency
becomes more pronounced as the number of items in the
sample array increases (two items, t(11) = 0.74, p = 0.47;
four items, t(11) = 2.7, p = 0.02; six items, t(11) = 5.9, p G
0.001). Clearly, therefore, errors in identifying which
item’s color should be reported influence performance on
this task.
The existence of these non-target responses may

provide an alternative account for the non-Gaussian distri-
bution of error observed in Figure 2a, without implying any
upper limit on the number of items that can be stored in
memory. To provide a fair comparison of the two
alternatives, we fit data from the color report task with a
mixture model which decomposed the response distribution
into three components (illustrated in Figures 3a–3c). The

Figure 2. Distribution of errors relative to target and non-target colors. (a) Frequency of response as a function of the difference between
reported color value and target color value, for varying numbers of items (N) in the sample array. The long tails of the distribution observed for
larger sample sizes (e.g., six items, far right) are inconsistent with the simple Gaussian model shown in Figure 1c, top, but are consistent with
either of the other models shown in Figure 1c. Colored lines indicate the response probabilities predicted by a mixture model combining color
error, location error, and random components (see main text and Figure 3). (b) Frequency of responses as a function of the difference
between reported color value and each non-target color value. The strong central tendency observed for larger numbers of items (N) is
not predicted by Zhang and Luck’s (2008) model (Figure 1c, middle) but is consistent with errors in memory for location, as illustrated in
(Figure 1c, bottom). Colored line indicates the prediction of the three-component model. Error bars indicate SEM.
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Figure 3. Three sources of error in the report task and the effect of sample duration. (a–c) Subject responses on the memory task were
decomposed into three separate components, indicated by the shaded regions: (a) a Gaussian distribution with standard deviation A

centered on the target color value (T), corresponding to error in memory for color; (b) Gaussian distributions with the same width centered
on each non-target color value (NT), corresponding to errors in memory for location; (c) a uniform distribution, capturing random
responses unrelated to any of the sample colors. (d–f) Maximum likelihood parameters of the three-component model, as a function of
number of items in the sample array (mean across sample durations). (d) The standard deviation (A) increases with array size, indicating
increasing variability in memory for color; (e) the proportion of responses corresponding to non-targets increases with array size,
indicating increasing variability in memory for location; (f) the proportion of random responses is shown in black; the gray dashed lines
indicate the proportions of random responses expected for a fixed upper limit of 2, 3, or 4 items. (g–i) Effect of sample duration on each
parameter of the model: light gray symbols and dotted line, 100 ms; dark gray symbols and dashed line, 500 ms; black symbols and solid
line, 2 s. Sample duration does not effect variability in memory for color (g) or location (h) but has a substantial effect on the frequency of
random responses (i). Error bars in this figure indicate within-subject SEM, as in Zhang and Luck (2008).
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first component corresponded to errors in memory for color
and consisted of a Gaussian centered on the target color
value (Figure 3a). The second component captured errors in
memory for location and consisted of a Gaussian centered
on each non-target color (Figure 3b). The final component
consisted of a uniform distribution (Figure 3c), correspond-
ing to the probability of responding at random, as in Zhang
and Luck’s (2008) model.
The results of this analysis are shown in Figures 3d–3f.

As the number of items in the sample array increased from
one to six, the standard deviation of the error distribution
centered on the target color increased monotonically
(Figure 3d; F(3,33) = 18.3, p G 0.001). This indicates a
decrease in the precision with which each item’s color
was stored, consistent with the predictions of the resource
model.
The resource model also predicts that error in memory

for item locations will increase with increasing number of
items. In agreement with this prediction, the proportion of
responses captured by the non-target component increased
monotonically with array size (Figure 3e; F(3,33) = 50.9,
p G 0.001).
The remaining uniform component (Figure 3f), corre-

sponding to random responses, represents a much smaller
proportion of trials than in Zhang and Luck’s (2008)
analysis. For six-item arrays, for example, Zhang and
Luck estimated that random guesses made up 62% of
responses (the corresponding result applying their analysis
to our data was 48%), but in the current analysis only 14%
of responses are explained by the uniform component.
This indicates that a substantial proportion of the
responses Zhang and Luck attributed to random guessing
were in fact instances of subjects’ misremembering which
item was at the target location. In comparison to the three-
component model, Zhang and Luck’s model significantly
overestimated the frequency of random responding at all
set sizes where non-targets were present (t(11) 9 5.8, p G
0.001). Furthermore, the actual frequency of random
responses observed here is not consistent with an upper
limit on the number of items stored.
To illustrate this last point, the predicted frequencies of

guessing based on an upper limit of two, three, or four
items are illustrated by the dashed lines in Figure 3f.
Zhang and Luck’s (2008) model predicts that, for array
sizes up to and including the limit, all items should be
stored in memory and subjects should produce no random
responses. Instead we observed a highly significant
increase in the random component as a result of the
change from one to two items (from 1% to 5%; t(11) = 3.1,
p = 0.009). Once an upper limit on number of items has
been exceeded, there should be a rapid increase in the
frequency of guessing; the opposite result was observed:
the uniform component appeared to saturate at about four
items (16% versus 14% for six items; t(11) = 0.7, p = 0.50).
An alternative explanation for this small proportion of

random responses is revealed by examining the effects of
sample exposure time. Zhang and Luck (2008) presented

each sample array of colored squares for only 100 ms:
conceivably not enough time to fully encode all the visual
information in the array into memory. To test this
possibility, in the current study we parametrically varied
the sample display time between 100 ms and 2 s: the
consequences of this manipulation for each of the three
model components are shown in Figures 3g–3i.
Varying sample time had no consistent effect on errors

in memory for color (Figure 3g; F(2,22) = 1.7, p = 0.21) or
for location (Figure 3h; F(2,22) = 0.2, p = 0.86). However,
increasing the duration of the sample array dramatically
decreased the frequency of random responses (Figure 3i;
F(2,22) = 6.1, p = 0.008). This strongly suggests that the
tendency for subjects to respond at random on a small
proportion of trials is the result of incomplete encoding of
items into memory rather than an upper limit on how
many items can be stored. At the longest presentation time
tested (2 s; black symbols and solid line in Figure 3i),
random responses made up on average less than 6% of the
total response distribution, indicating that performance on
the task could be accounted for almost entirely by the
combination of variability in color and position predicted
by a resource model.

Discussion

The recent controversy surrounding the nature of
working memory has focused on what the precision of
recall reveals about the mechanisms underlying memory
(Alvarez & Cavanagh, 2004; Awh et al., 2007; Bays &
Husain, 2008, 2009; Cowan & Rouder, 2009; Wilken &
Ma, 2004; Zhang & Luck, 2008). In this study, we
examined performance on a task in which subjects were
asked to recall the color of an object displayed at a
specified location. Our findings show that the precision
with which subjects report this color declines with
increasing number of objects in the memory array. This
finding is consistent with a model of visual working
memory in which a common resource must be shared out
between all items in the display (Bays & Husain, 2008). In
this model, the precision with which an item is stored
depends on the fraction of the total resource allocated to
its storage. Because observers do not know which item
will be probed when they view an array, the resource will,
on average, be shared out equally among all items; hence,
performance declines with increasing number of items.
Contrary to this view, performance on this same task

has recently been put forward as strong evidence for the
existence of a fixed number of discrete object representa-
tions or “slots” in visual working memory (Zhang &
Luck, 2008). The observed effect of the number of objects
on precisionVand in particular the large difference in
precision between one and two item arrays (Figure 1b)V
cannot be reconciled with the traditional model in which
each item is stored in a separate slot (Cowan, 2005; Luck
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& Vogel, 1997; Pashler, 1988; Vogel et al., 2001).
Instead, Zhang and Luck (2008) propose a modification
to the original slot model whereby slots can “double up”
and store the same item, combined with an averaging
process to obtain a single estimate per item. This
modification allows the slot model to behave like a
quantized version of the resource model and hence exhibit
the same dependence of precision on the number of items
stored, albeit at substantial cost to the parsimony and
conceptual power of the original model. One might
question the utility of the slot concept if it must be
modified so that there is now no longer a one-to-one
correspondence between a slot and a visual object that is
represented.
Despite making many similar predictions for behavior,

this modified slot model remains fundamentally different
from the resource model and has radically different impli-
cations for how the brain solves the problem of storing
visual information. Understanding the nature of visual short
term memory is crucial to understanding how observers
perceive the world (O’Regan, 2001; Simons & Rensink,
2005), deploy attention to visual items (Awh & Jonides,
2001; Bundesen & Habekost, 2008; de Fockert et al., 2001;
Lepsien & Nobre, 2007; Soto & Humphreys, 2006),
or dynamically acquire information about a scene from
glimpses obtained between eye movements (Henderson,
2008; Irwin, 1991). The color report task provides a key
paradigm to consider and test these opposing views.
One crucial distinction that is retained by Zhang and

Luck’s (2008) modified scheme is that the slot model,
unlike the resource model, predicts a fixed upper limit on
the number of items that can be simultaneously held in
memory. In their analysis of the color report task, Zhang
and Luck considered responses that could not be
explained by simple Gaussian variability in memory for
the target color (Figure 1c, top) to be due to random
guesses (Figure 1c, middle). These random responses
were interpreted as evidence for just such an upper limit
on the number of items stored. According to this
interpretation, random responses occur on trials where
no information is stored about the probed item because the
number of array items exceeds the maximum number of
items that can be stored. As substantial numbers of these
responses are observed even with array sizes as small as
three items (Zhang & Luck, 2008, 2009), this interpreta-
tion implies that the average capacity limit is about two.
However, one critical factor that has previously been

overlooked on this task (Wilken & Ma, 2004; Zhang &
Luck, 2008, 2009) is the need for subjects to remember
the locations of the array items as well as their color.
Subjects are instructed to report the color of only one of
the items held in memory: the item that matched the
location of the probe. Therefore, subjects must compare
the probe location with the remembered location of each
array item to determine which color to report. The
resource model predicts that locations stored in working
memory will be corrupted by noise, in the same way as

colors. Therefore, observers will sometimes incorrectly
identify which item was at the probed location and
mistakenly report the remembered color of one of the
non-probed items (Figure 1c, bottom).
Our analysis confirms that subjects are more likely to be

biased in their responses by the colors of non-probed
items than by chance alone (Figure 2b). Importantly, when
responses to the non-targets are taken into account, we
have shown that the majority of responses Zhang and
Luck (2008) interpreted as random guesses are in fact due
to errors in memory for location, as predicted by a
resource model (Figure 3).
The resource model proposes that the precision with

which an item is stored is determined by the fraction of
total memory resources allocated to it. This may have a
very simple neural interpretation in terms of population
coding: because there is substantial noise in the activity of
any individual neuron, the precision of the population
estimate of a sensory feature is determined by the number
of neurons involved in encoding it (Dayan & Abbott,
2001; Seung & Sompolinsky, 1993; Vogels, 1990). The
tuning-curve properties of neurons do not allow a single
cell to simultaneously encode two different feature values;
therefore, the distribution of a common memory resource
in this model may, at the simplest level, correspond to the
assignment of a finite pool of memory neurons to encode
the different feature values in a scene. An alternative
proposal, which makes very similar predictions, is that the
resource corresponds to a limit on the total number of
spikes expended maintaining a scene in memory (Ma &
Huang, 2009).
Previous results suggest that visual features on different

dimensions do not compete for representation in working
memory (Luck & Vogel, 1997; Wheeler & Treisman,
2002), so we predict that storage of colors and locations
will depend on separate resources. Nonetheless, as the
number of items stored in memory increases, the resource
model predicts that error will increase in the stored
representations of both color and location. This was
indeed observed: both variability in memory for color
and frequency of errors due to memory for location
increased with increasing array size (Figure 3).
An additional source of error that may also contribute to

the non-target responses is “misbinding” (Robertson,
2003; Treisman, 1998; Treisman & Schmidt, 1982; Wolfe
& Cave, 1999) in which, for example, the colors of two
items become inadvertently switched in memory. In this
situation, even if the subject correctly identifies which
item was at the probed location, he or she will still
respond with one of the non-target colors. Misbinding, in
healthy people, has generally been observed only with
very brief presentations (e.g., Treisman & Schmidt, 1982),
implying that it is an error of encoding rather than
memory, in which case we do not expect these errors to
contribute substantially to our results at any but the shortest
exposures. However, even if some of the responses Zhang
and Luck (2008) viewed as random are in fact due to
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misbinding rather than location errors, this does not
support the interpretation that some items have not been
stored, and so is equally inconsistent with a slot model.
A small proportion of apparently random responses

could not be explained by either uncertainty in color or
location. However, the frequency of these unexplained
responses proved highly dependent on the presentation
duration of the memory array (Figure 3i). This suggests
that these errors occurred when the exposure time was too
short for all the visual information in the array to be
encoded into working memory (Bundesen, 1998). While
previous studies have observed no advantage of increasing
array duration above 100 ms for unmasked displays (Luck
& Vogel, 1997; Vogel et al., 2001), these tests were based
on detection of supra-threshold changes in color and were
therefore insensitive to the precision with which items
were stored.
The encoding errors observed in this study showed a

dependence on the number of items in the array,
suggesting that individual items or features must compete
for entry into memory. This finding is consistent with
previous change detection results using brief masked
displays (Vogel, Woodman, & Luck, 2006; Woodman &
Vogel, 2005). Competition may simply result from the
need to serially allocate attention to each item in order to
encode it into memory (Desimone & Duncan, 1995;
Treisman, 1998): if multiple items are presented very
briefly, some may not have been attended by the time the
display is blanked. Alternatively, encoding may depend
on a resource-limited parallel process similar to the one
proposed here for storage.
At the longest exposure times, encoding errors were

minimal and the distribution of responses was explained
by a combination of errors in memory for color and
location, as predicted by the resource model. We conclude
that the high frequency of “guessing” reported on this task
by Zhang and Luck (2008), and taken to indicate an upper
limit on storage, was in fact the result of two factors. First,
very brief presentation of the memory array may have led
to incomplete encoding of some items, independent of
errors in storage. Second, Zhang and Luck’s analysis
considered only variability in the response feature (color)
and overlooked the possibility of errors in the feature by
which responses were cued (location).
In summary, we have found no evidence to support a

fixed upper limit on the number of visual items that can be
held in working memory, despite examining the same task
previously used to argue for a “slot” model (Zhang &
Luck, 2008). Our findings are equally inconsistent with
the several “hybrid” models that have been proposed
(Alvarez & Cavanagh, 2004; Awh et al., 2007; Xu &
Chun, 2005) in which a fixed upper limit of three or four
items coexists with a variable limit on total “information
load” or object complexity. These models similarly
predict a rapid increase in random responses once the
upper limit is exceeded, a prediction that is incompatible
with the current results. Instead, performance on the color

report task is best explained in terms of a common working
memory resource that must be distributed increasingly
finely as the number of visual items increases.
The symmetry and simplicity of the memory arrays

makes equal distribution of resources to each item the
most likely strategy on this task. However, resources can
be allocated more flexibly: in a task where attention was
drawn to one item in an array by a flash, memory
resources were preferentially allocated to enhance repre-
sentation of the salient itemVat the cost of reducing the
resolution with which other items were stored (Bays &
Husain, 2008). Outside of the laboratory, the complexity
of natural scenes is likely to preclude an even distribution
of resources, and resource allocation may similarly
prioritize storage of salient or goal-relevant visual objects
(Itti & Koch, 2001).
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