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Working memory declines with normal aging, but the nature of this impairment is debated. Studies based
on detecting changes to arrays of visual objects have identified two possible components to age-related
decline: a reduction in the number of items that can be stored, or a deficit in maintaining the associations
(bindings) between individual object features. However, some investigations have reported intact binding
with aging, and specific deficits arising only in Alzheimer’s disease. Here, using a recently developed
continuous measure of recall fidelity, we tested the precision with which adults of different ages could
reproduce from memory the orientation and color of a probed array item. The results reveal a further
component of cognitive decline: an age-related decrease in the resolution with which visual information
can be maintained in working memory. This increase in recall variability with age was strongest under
conditions of greater memory load. Moreover, analysis of the distribution of errors revealed that older
participants were more likely to incorrectly report one of the unprobed items in memory, consistent with
an age-related increase in misbinding. These results indicate a systematic decline with age in working
memory resources that can be recruited to store visual information. The paradigm presented here provides
a sensitive index of both memory resolution and feature binding, with the potential for assessing their
modulation by interventions. The findings have implications for understanding the mechanisms under-
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pinning working memory deficits in both health and disease.
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A deterioration of short-term memory (STM) is a well-
established feature of normal aging in humans (Craik, Luo, &
Sakuta, 2010; D’Esposito & Gazzaley, 2011; lachini, lavarone,
Senese, Ruotolo, & Ruggiero, 2009; Light, 1991; Reuter-Lorenz &
Sylvester, 2005; Salthouse & Babcock, 1991). Considering the
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global aging of the world’s population, quantifying the decline of
cognitive functions such as visual working memory (VWM) and
understanding the mechanisms underlying it is of growing impor-
tance. Previous studies of age-related decline in VWM have sought
to identify specific components of recall of visual information that
deteriorate with age. These studies have predominantly been based
on change detection tasks, in which observers are presented in
sequence with two versions of an array of visual elements (e.g.,
colored squares) and must decide whether they are the same or
different.

Change detection results in younger (university-age) partici-
pants have been interpreted as indicating a fixed memory capacity
that can maintain a small number of integrated object representa-
tions (Luck & Vogel, 1997; Pashler, 1988; Vogel, Woodman, &
Luck, 2001). In older participants, this approach has identified two
putative components of the age-related decline in visual memory:
a decrease in the number of whole objects that can be held in
memory, and a failure to maintain the associations that bind
individual visual features into objects (Bopp & Verhaeghen, 2009;
Brockmole, Parra, Sala, & Logie, 2008; Cowan, Naveh-Benjamin,
Kilb, & Saults, 2006; Mitchell, Johnson, Raye, & D’Esposito,
2000; Olson et al., 2004; Parra, Abrahams, Logie, & Sala, 2009;
Sander, Werkle-Bergner, & Lindenberger, 2011a).

However, other investigators have found no decline in feature
binding in healthy older people (Brockmole et al., 2008; Parra,
Abrahams, Logie, et al., 2009) but have instead observed a specific
failure of binding in Alzheimer’s disease (Parra, Abrahams, Fabi,
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et al., 2009; Parra, Abrahams, Logie, & Della Sala, 2010; Parra,
Abrahams, Logie, Méndez, et al., 2010). Indeed, it has been argued
that feature misbinding in working memory might be the earliest
cognitive marker of disease onset (Parra, Abrahams, Logie, &
Della Sala, 2010; Parra, Abrahams, Logie, Méndez, et al., 2010;
Parra, Abrahams, Fabi, et al., 2009). The implications of such a
proposal in terms of screening for early Alzheimer’s disease and
distinguishing such cases from normal healthy people are obvi-
ously profound. It would, therefore, be important to establish
whether maintenance of feature binding in working memory is
truly invariant with age.

In contrast to the binary (correct or incorrect) responses ob-
tained in tasks such as change detection, methods for examining
the precision with which visual information is stored are an in-
creasingly prominent feature of working memory research in
younger adults (Bays, Catalao, & Husain, 2009; Bays, Gorgorap-
tis, Wee, Marshall, & Husain, 2011; Bays & Husain, 2008; Gor-
goraptis, Catalao, Bays, & Husain, 2011; Huang, 2010; Lakha &
Wright, 2004; Palmer, 1990; Wilken & Ma, 2004; Zhang & Luck,
2008; Zokaei, Gorgoraptis, Bahrami, Bays, & Husain, 2011). More
recently, this approach has profitably been extended to children
(Burnett et al., 2012) and nonhuman primates such as macaque
monkeys (Elmore et al., 2011; Lara & Wallis, 2012). Here we
apply the approach to older human participants, using a recently
introduced dual-feature working memory protocol (Bays, Wu, &
Husain, 2011). This task allows us to quantify both the resolution
with which participants recall pairs of visual features and the
fidelity with which they maintain feature bindings.

Our results indicate that the precision with which visual
features can be maintained in memory declines with aging.
When multiple items are held in memory, older individuals also
demonstrate a significantly increased frequency of misreporting
errors, in which they incorrectly report a visual feature belong-
ing to one of the uncued items in the array. These errors are
consistent with an age-related impairment in maintaining fea-
ture bindings. Our findings have implications for the under-
standing of normal aging as well as for the use of binding as a
marker for Alzheimer’s disease.

Table 1

Method

Experimental Procedures

A total of 60 participants (25 male, 35 female) with ages in the
range 19 to 77 years took part in the study after giving informed
consent. Participants were recruited by e-mail invitation to indi-
viduals who had signed up to Psychology and Cognitive Neuro-
science Department subject pools. Invitations were targeted to
recruit an even distribution of ages in the subject group. Details of
participants’ ages, educational background, and employment status
are presented in Table 1. All participants had normal or corrected-
to-normal visual acuity; none reported any difficulty in making
color discriminations. Stimuli were displayed on a 15-in. LCD
computer display at a viewing distance of 45 cm. Participants
performed a dual-feature working memory task (Bays, Wu, &
Husain, 2011), which enabled us to quantify the precision of recall
for visual features in two dimensions: color and orientation.

Each trial began with presentation of a memory array (example
in Figure la) consisting of randomly colored and oriented bars
(0.64° X 3.6° of visual angle) uniformly distributed around an
imaginary circle (8° diameter) centered in the display (minimum
interitem separation: 6.9°). Half of the participants were shown
each memory array for 2 s and the other half for 200 ms, with the
two groups matched for age distribution (p = .94, two-sample
Kolmogorov—Smirnov test). The memory array was followed by a
pattern mask (100 ms) and then a blank retention interval (900 ms).
The pattern mask was included to ensure iconic (sensory) memory
did not contribute to performance. A single (probe) item was then
presented at one randomly chosen location from the preceding
memory array. Subjects were instructed to adjust the orientation
and color of the probe item to match the features of the item that
had been presented at the same location in the memory array (the
target).

The color and orientation of each item in the memory array were
independently chosen at random from two circular parameter
spaces. The orientation parameter space corresponded to the range
of angles 0°-180° (i.e., the full range of possible bar orientations).

Participant Demographics and Mean Scores (SD in Parentheses) on Memory Span Tasks:

Forward (F), Backward (B)

Quartile 1 2 3 4
Age (yrs)
Range 19-26 27-46 47-66 67-77
M (SD) 22.7(2.7) 39.3(7.3) 57.1(7.4) 71.5(3.3)
Gender I0F5M SFI0M I11F4M 9F6M
Education (yrs) 15.5(1.2) 14.5 (2.0) 15.0(2.9) 12.4 (1.5)
% in education 80 7 0 0
% in employment 20 73 27 0
% retired/unemployed 0 20 73 100
Digit span
F 11.1 (2.9) 9.9(2.9) 10.5 (2.6) 8.9 (2.6)
B 8.0 (2.5) 6.3(24) 7.6 (2.7) 5914
Total 19.1 (5.2) 16.2 (4.9) 18.1 (5.1) 14.8 (3.5)
Corsi task
F 8.3 (1.9) 7.3 (1.7) 73 (1.4) 7.0 (1.6)
B 7.7(1.5) 6.7 (2.1) 6.5 (1.5) 6.1(1.1)
Total 15.9 (1.5) 14.0 (3.3) 13.8 (1.9) 13.1(2.3)
Total score 35.0(6.5) 30.2 (6.8) 31.9 (6.1) 27.9 (4.9)
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Figure 1.
oriented bars, followed by a pattern mask. After a blank retention interval, a probe appeared and subjects used
two response dials to adjust its color and orientation to match the item at the corresponding location in the
memory array (the target). (b & c) Turning each dial cycled the probe through a circular parameter space of
possible colors or orientations. Some examples of orientations (b) and colors (c¢) are shown corresponding to
different points in each response space.

For color, the parameter space was defined by a circle in CIE
L*a"b* coordinates with constant luminance (L* = 50), center at
a” = b" = 20, and radius 60.

Participants adjusted the color and the orientation of the probe
using two input dials (Powermate USB Multimedia controller,
Griffin Technology, Nashville, TN). One dial controlled the
probe’s color and the other dial its orientation. Turning the dial
associated with orientation caused the probe to rotate through the
range of possible angles (Figure 1b). Turning the dial associated
with the color feature caused the probe to cycle through the space
of possible colors (Figure 1c). The probe’s initial features were
randomly assigned. Subjects could adjust the two dials in any order
or simultaneously, and indicated adjustment was complete by
depressing the center of either dial. Accuracy was stressed, and
responses were not timed.

Two memory loads were tested: a low-load condition, in which
one item only was presented in each trial, and a high-load condi-
tion, in which three items were presented per trial. In the high-load
condition the item to be probed was randomly selected on each
trial, so participants were required to memorize the color and the
orientation of all three bars in order to perform well on the task.
Each participant completed 25 trials in the low-load condition, and
at least 125 trials (median 175) in the high-load condition. Fewer
trials were required in the low-load condition because there was no
possibility of misreporting a nontarget item, simplifying the data-
intensive modeling component of the analysis (see below).

Standard Tests of Memory Span

In addition to the main experiment, each participant also com-
pleted a set of well-established tests of STM span: the forward and

Response
dials

The dual-feature working memory task. (a) Participants were presented with an array of colored,

backward digit span tasks, and the forward and backward Corsi
block-tapping tasks for spatial span. In the digit span tasks, par-
ticipants were read sequences of digits (e.g., 3, 7, 9, 4) and asked
to repeat them back in the same order (forward digit span task) or
in the reverse order (backward digit span task). Each test began
with sequences of two digits. If participants performed success-
fully, they were asked to repeat longer sequences. A participant’s
score (or “memory span”) was defined as the maximum length at
which they could successfully recall at least one out of two
sequences. In the Corsi spatial span task, the experimenter pointed
in sequence to a set of cubes randomly distributed on a platform
and participants are asked to reproduce the sequence either in the
same order (forward Corsi task) or in the reverse order (backward
Corsi task). Performance was scored in the same way as the digit
span task. The sum of forward and backward scores was calculated
to give a total score on each task, and the sum of these totals
calculated to give a total test score.

Analysis

The analysis of the dual-feature task closely followed that
described by Bays, Wu, and Husain (2011) in their study of
younger participants. As the spaces of possible values for both
color and orientation were circular, feature values and participants’
responses were coded as angular measures (from —r to m radians).
For each trial, the recall error in each dimension was calculated as
the angular deviation between the reported feature value and the
true feature value of the target item in the memory array. Recall
precision was defined as the reciprocal of the circular standard
deviation of error. We used the definition of standard deviation for
circular data given by Fisher (1995), and subtracted from the



4 PEICH, HUSAIN, AND BAYS

precision estimate the value expected by chance (i.e., if the subject
had responded at random on each trial).

To investigate the source of participants’ errors in the dual-
feature task, we applied a probabilistic model developed by Bays
et al. (2009), extending the previous model of Zhang and Luck
(2008). In our model, error in reporting the value of a particular
feature, for example, orientation, is assumed to arise from three
possible sources (illustrated in Figure 4a): Gaussian variability in
reporting the feature value belonging to the target; mistakenly
reporting a feature value of one of the other (nontarget) items in
the memory array; or simply responding at random. Note that in
Zhang and Luck’s (2008) model, misreporting nontarget fea-
tures—an index of misbinding—is not modeled.

Mathematically the model is described by the following equa-
tion:

A N 1 R 1
p®) =ad b — e)+3n—12 dud =)y~ ()

where 0 is the true value of the target item, 6 the value reported by
the subject, and &, is the von Mises distribution (the circular
analogue of the Gaussian) with mean zero and concentration
parameter k. The probability of reporting the correct target item is
given by a. The probability of mistakenly reporting a nontarget
item is given by B, and {¢,, ¢, ... ¢, } are the feature values of the
m nontarget items. The probability of responding randomly (i.e.,
from a uniform distribution) is givenby y =1 — a — B.

Maximum likelihood estimates of the parameters o, 3, y and k
were obtained separately for each subject, feature dimension, and
experimental condition using an expectation-maximization algo-
rithm. The optimization procedure was repeated from a range of
different initial parameter values to ensure that global maxima
were obtained. Concentration k was converted to the more familiar
standard deviation, o, according to the method of Fisher (1995).
Analysis code is available online at http://www.sobell.ion.ucl.ac.uk/
pbays/code/IV10/

We thus obtained separately for each participant and feature
dimension (color and orientation) the probability of responding
with the target value (farget component), the probability of re-
sponding randomly (uniform component) and, in the high-load
condition, the probability of responding with one of the two
nontarget values (nontarget component). We also obtained from
the model the standard deviation of the von Mises distribution,
corresponding to the variability in memory for each feature di-
mension.

Data from each individual participant was analyzed separately
to obtain the measures described above. Statistical outliers (de-
fined as parameter values > 3 SD from mean, totaling < 2% of
data points) were removed, then each parameter was tested for
effects of age using linear regression. ANCOVA was used to
make statistical comparisons between conditions (low-load or
high-load) and feature dimensions (color or orientation), with
age as a continuous covariate. As participants’ ages were ap-
proximately evenly distributed over the age range, for the
purposes of presentation only we divided the sample into four
age quartiles. Demographics of the different groups thus formed
are presented in Table 1.

Results

Recall Errors and Precision

Adults of different ages were tested on their ability to reproduce
from memory the color and orientation of a single probed item
from an array of colored bars (see Figure 1). Figure 2 illustrates the
distribution of errors made on this task by the youngest partici-
pants (lowest age quartile, < 27 years, green) and the oldest
(highest age quartile, > 66 years, blue) for each feature dimen-
sion— orientation or color—and memory load (one or three items).
In each case, older participants produced a broader distribution of
errors indicating less accurate recall of the memory array.

The fidelity of memory can be formally assessed with a measure
of recall precision (see Figure 3), which evaluates the degree to
which responses cluster around the correct feature value: A pre-
cision of zero indicates that responses are randomly distributed
relative to the target. Consistent with previous studies involving
only younger participants, for all age quartiles recall precision
decreased significantly with increasing memory load (compare
Figures 2a & 2c¢ with Figures 2b & 2d; red vs. black symbols in
Figure 3; main effect of load: F(1, 58) = 22.6, p < .001).

In the high-load condition, when participants had to maintain
three items in memory simultaneously, recall precision declined
significantly with increasing age (main effect of age: F(1, 58) =
17.7, p < .001). This effect of age was present both for orientation
(F(1,58) = 21.2, p < .001) and color judgments (F(1, 58) = 18.5,
p < .001). A significant effect of age was also observed in the
low-load condition, when only one item had to be maintained
(main effect: F(1, 58) = 5.9, p = .017; for orientation: F(1, 58) =
34.8, p = .025; for color: F(1, 58) = 84, p = .006). The
relationship between age and precision was significantly stronger
in high-load than low-load conditions (r = —0.50 vs. —0.32;
1(57) = 2.1, p = .04). There were no significant effects of feature
(color vs. orientation) or age X feature interactions.

Components of Error

These results suggest that the fidelity with which individual
features can be recalled declines significantly across the adult life
span. This conclusion is based on the relationship between age and
precision, a nonparametric statistic reflecting the fidelity of recall
of the target features, independent of any particular model of the
underlying response distribution. To investigate the source of this
overall decline in precision, we fit the data with a probabilistic
model that distinguishes three sources or components of error
(illustrated in Figure 4a). These components are:

e Gaussian variability in recall centered on the correct target
feature (left panels in Figure 4);

e Misreporting errors, in which participants report a feature
belonging to one of the other (nontarget) items (center panels,
Figure 4);

e Uniformly distributed errors unrelated to any of the items in
the display (right panels, Figure 4).

The fitted parameters of the model are shown in Figures 4b and
4c, for orientation and color judgments, respectively. Left-hand
panels plot the standard deviation of the Gaussian component of
the fitted model, indicating the variability with which each feature
was recalled. Consistent with the overall performance effects de-
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Figure 2. Distribution of errors for young and old participants. (a—b) Frequency of response as a function of
the deviation between reported and target orientations, for participants in the youngest (green symbols) and
oldest (blue symbols) age quartiles. Results are shown for [low-load, one memory item, (a); high-load, three
memory items, (b)] conditions. Colored lines indicate the response probabilities predicted by a fitted probabi-
listic model of response generation. Note the increase in response variability (width of the distribution) for older
participants. (c—d) Corresponding results for recall of color.

scribed above, recall variability increased significantly with age in
the high-load condition (main effect of age, F(1, 58) = 6.3, p =
.013; for orientation only: F(1, 58) = 4.41, p = .04; for color only:
F(1, 58) = 123, p < .001). A significant effect of age on
variability was also observed in the low-load condition (main
effect, F(1, 58) = 10.9, p = .001; for orientation: F(1, 58) = 9.6,
p = .003; for color: F(1,58) = 5.3, p = .025). Gaussian variability
increased significantly with increasing memory load (main effect
of load: F(1, 58) = 7.8, p = .0006).

Consistent with previous results in young adults, a significant
proportion of responses in multiitem arrays (mean 23% for orien-
tation, 12% for color) were not accounted for by Gaussian vari-
ability centered on the target feature. These responses were instead
attributed in the model to either misreporting or uniformly distrib-
uted errors (Bays et al., 2009; Bays, Wu, & Husain, 2011; Zhang
& Luck, 2008).

The center panels in Figures 4b and 4c show the frequency of
misreporting errors as estimated by the model, for orientation and
color judgments, respectively. These errors occur in high-load
(i.e., multiitem) arrays when the participant incorrectly reports a

feature belonging to one of the other, nontarget items (by defini-
tion such errors cannot occur in the low-load condition, when only
one item had to be retained). Although these errors were rare for
the youngest participants (mean 5% for orientation, 1% for color),
the frequency of misreporting errors increased significantly with
age (main effect of age: F(1, 58) = 30.3, p < .001; for orientation
only, F(1, 58) = 16.8, p < .001; for color only, F(1, 58) = 6.3,
p = .017). Although significant for both features, the increase in
misreporting errors was greater for orientation (mean 19% for
highest age quartile) than for color (mean 4%) as confirmed by
a significant age X feature interaction, F(1, 58) = 9.6,
p = .002.

Finally, we turn to uniformly distributed errors. Right-hand
panels in Figure 4 show the frequency of these responses. Unlike
misreporting errors, the frequency of uniform errors was not in-
fluenced by age, either for low-load (main effect of age: F(1,
58) = 0.1, p = .73) or high-load arrays (main effect of age: F(1,
58) = 0.5, p = .48). Uniform error frequency was also not
significantly affected by load (main effect of load: F(1, 58) = 0.7,
p = .40).
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Effect of Exposure Duration

Previous studies examining recall precision in young adults
have found that limiting the duration of presentation of the mem-
ory array leads to a decrease in recall fidelity (Bays et al., 2009;
Bays, Gorgoraptis, et al., 2011). With respect to components of the
probabilistic model, brief masked exposures lead to an increase in
both Gaussian variability and the frequency of uniformly distrib-

uted errors, consistent with incomplete encoding of array items
into memory (Bays, Gorgoraptis, et al., 2011).

In the present experiment, presentation duration was manip-
ulated as a between-subjects factor. Figure 5a plots precision as
a function of exposure duration for low-load and high-load
displays (average across feature dimensions). Consistent with
previous studies, presenting the array briefly (200 ms) resulted
in a significant decrease in precision for both array sizes,
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1(58) > 3.3, p < .002, compared with a longer presentation time
of 2 s. Figures 5b—5d show the effect of exposure duration on
each of the parameters of the mixture model. Shorter exposures
resulted in significantly increased Gaussian variability at both
high and low loads, #58) > 2.3, p < .022. Decreased exposure
time also significantly increased uniform responses when mul-
tiple items were presented (high-load: #(58) = 2.3, p = .025),
but not for displays of one item (low-load: #58) = 0.87, p =
.39). There was no significant effect on frequency of misreport-
ing errors, #(58) = 0.16, p = .87.

We observed no significant effect of exposure duration on
correlations between age and precision, or between age and any of
the parameters of the probabilistic model. The significant effects of
age on precision, Gaussian variability, and misreporting frequency
observed in the main analysis were reproduced when both long
(2 s) and short (200 ms) exposure groups were analyzed sepa-
rately (p < .05).

In summary, although decreasing exposure duration had the
expected detrimental effect on recall performance for subjects
regardless of age, the decline in recall fidelity with age was a
consistent finding at both long and short exposures.

Nonparametric Validation of Misreporting Errors

The parameter estimates obtained from fitting the probabi-
listic model indicate that older participants were more likely to
incorrectly report features of nontarget items (Figure 4, center
panels). To demonstrate that this result is not dependent on specific
details of the model, and provide a more direct test of the presence of
misreporting errors, we examined the deviations between subjects’
responses and the feature values of nontarget items.

For data consisting only of responses to the target, or random
guesses, or a mixture of the two, we would expect the deviation of
responses from nontarget features to be randomly distributed.
However, the magnitude of deviations from nontarget features
observed in our data (1.78 * 0.01 rad, r.m.s.) was significantly
lower than expected by chance, #(59) = 4.9, p < .001, confirming

that nontarget features contributed significantly to our subjects’
responses overall.

If frequency of nontarget errors increases with age, as the
model parameters indicate, we would expect to see a corre-
sponding decrease in the deviation of responses from nontarget
features. The magnitude of deviations from nontarget features
indeed declined significantly with age (r = —0.45, p = .001),
providing an additional nonparametric validation of the age-related
increase in misreporting errors indicated by model fitting.

Joint Distribution of Errors

Because participants reported both color and orientation on each
trial, we can examine the extent to which errors in the two different
features are correlated. Based on performance of younger partici-
pants on the dual-feature task, Bays, Wu, and Husain (2011)
demonstrated substantial independence between features in both
the magnitude and source of errors, a finding with important
implications for the structure of working memory representations
(see also Fougnie & Alvarez, 2011). The present study presents the
opportunity to investigate whether these results are replicated in a
larger sample covering a broader range of ages.

Figure 6a displays the correlation in error magnitude between
color and orientation judgments for different array sizes and ex-
posure durations. Consistent with previous studies, with prolonged
exposure (2 s) no significant correlations were observed in low- or
high-load conditions (black bars; #59) < 1.6, p > .12). This
means that the size of the error in recalling one feature of an item
was fully independent of the size of the error in recalling the other
feature of the item, on the same trial.

Bays, Wu, and Husain (2011) hypothesized that very brief
presentation times could produce correlated errors, if there was
insufficient time to encode all items in the memory array. Consis-
tent with this, in the brief (200 ms) exposure condition we ob-
served a small (» < .1) but significant correlation in error magni-
tude between features (light bars; #(59) > 2.4, p < .021; effect of
duration: #(59) > 2.0, p < .046).
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Figure 6. Correlation of errors in orientation and color judgments. (a) Correlation between magnitude of error
in color and orientation judgments for static (2 s; black bars) and briefly flashed (200 ms; light bars) memory
arrays, in low- and high-load conditions. Asterisks indicate significant (p < .05) correlations and effects of
exposure duration. (b) Correlation between magnitude of deviation of responses from nontarget colors and
orientations in the high-load condition, for static and briefly flashed memory arrays. No significant correlations
were observed, indicating that misreporting of nontarget features occurred independently in each feature

dimension.

In their study of young adults, Bays et al. observed that misreport-
ing errors also occurred independently in each feature dimension, that
is, the fact that a participant reported a nontarget’s color did not make
it any more likely that they would incorrectly report the same non-
target’s orientation (or vice versa). If misreporting errors were corre-
lated across feature dimensions in the present study, it would be
observed as a correlation in the magnitude of the response deviation
from nontarget feature values (Bays, Gorgoraptis, et al., 2011). This
correlation did not differ significantly from zero for long or short
exposures (Figure 6b; #(59) < 1.1, p > .32), and was significantly
lower than expected if nontarget errors in each dimension occurred
together (#(59) > 3.2, p < .003; based on marginal frequencies
obtained from model parameters). These results indicate that—like in
the previous study—misreporting errors occurred independently for
color and. orientation judgments.

Memory Span Tests

Participants completed two standard tests of working memory
span: digit and Corsi spatial span. Both tasks were executed
forward and backward. The results for each age quartile are pre-
sented in Table 1. Total score on the memory span tasks was
correlated both with age (r = —0.34, p = .009) and with the
number of years participants had spent in full-time education (r =
49, p = .001; see Table 2). However the correlation with age
became nonsignificant once the influence of education was re-
moved (partial correlation: r = —0.16, p = .24). By contrast,
low-load precision in our experimental task was not correlated

with years of education (r < .24, p > .07), and although high-load
precision was correlated with education (for orientation: r = .39,
p = .002; for color: r = .33, p = .01) these correlations became
nonsignificant once the influence of age was removed (partial
correlation: r < .21, p > .11).

Significant correlations were found between total score on the
memory span tasks and recall precision in both the high-load and
the low-load conditions of our experimental task, for both orien-
tation (for the low-load condition: » = .42, p < .001; for the
high-load condition: r = .67, p < .001) and color (for the low-load
condition: r = .44, p < .001; for the high-load condition: r = .58,
p < .001; see Table 3). Each individual component of the Corsi
spatial task (forward and backward) was also correlated with
high-load precision (p < .001) and low-load precision (p < .005).

Table 2
Correlations and Partial Correlations of Memory Task
Performance With Age and Education

Total score Precision in Precision in

on memory  low-load high-load
span tasks  condition condition
Correlation with age —0.34 —0.40 —0.57

Correlation with education 0.49 0.23 0.40
Partial correlation with age

(education held constant) —0.16 —-0.34 —0.48
Partial correlation with
education (age held constant) 0.41 0.07 0.20




Table 3

Pairwise Correlations for Memory Span Scores and Recall Precision. The Right (Upper) Triangle Shows Pairwise Correlations, the
Left (Lower) Triangle Shows Partial Correlations With Age Held Constant

Digit span Digit span Digit span Corsi span Corsi span Corsi span

low-load

Precision  Precision Precision
low-load high-load high-load

Precision

total forward  backward total forward  backward orientation  color  orientation color
Digit span total 0.95 0.93 0.37 0.26 0.37 0.28 0.29 0.52 0.43
Digit span forward 0.94 0.75 0.35 0.25 0.35 0.23 0.26 0.48 0.40
Digit span backward 0.92 0.74 0.34 0.24 0.34 0.30 0.29 0.51 0.42
Corsi span total 0.31 0.30 0.29 0.85 0.84 0.49 0.49 0.64 0.58
Corsi span forward 0.20 0.19 0.18 0.84 0.44 0.41 0.37 0.49 0.42
Corsi span backward 0.32 0.30 0.29 0.82 0.38 0.42 0.47 0.60 0.56
Precision low-load orientation 0.22 0.18 0.24 0.43 0.35 0.36 0.32 0.63 0.40
Precision low-load color 0.23 0.20 0.23 0.42 0.29 0.41 0.24 0.52 0.72
Precision high-load orientation 0.48 0.44 0.47 0.57 0.41 0.54 0.58 0.42 0.66
Precision high-load color 0.38 0.34 0.36 0.49 0.33 0.49 0.31 0.68 0.54

The forward and backward components of the digit span task were
correlated with high-load precision (p < .002), but only the back-
ward component was correlated with low-load precision (p = .02).

Correlations were stronger between memory span scores and
high-load precision than between memory span scores and low-
load precision. The component that correlated most strongly with
high-load precision was the reverse Corsi task (for orientation: r =
.60, p < .001; for color: r = .56, p < .001). Forward spans were
more weakly correlated with precision than backward spans, and
the forward digit span task was least strongly correlated (for
high-load precision, orientation: » = .48, p < .001; for color: r =
40, p = .002).

It is important to test whether the significant correlations re-
ported above between memory span and working memory preci-
sion are mediated by age. Total score on memory span tasks
remained correlated with both high-load precision and low-load
precision when the influence of age was removed (partial corre-
lation: p < .001). Both forward and backward spatial span scores
were correlated with high-load and low-load precision (forward:
p < .05; backward: p < .005) when age was held constant,
whereas for the digit span task, only the correlations with high-
load precision remained significant (forward: p < .009; backward:
p < .005).

Discussion

Memory is one of the cognitive functions most affected by
normal aging (Craik et al., 2010; D’Esposito & Gazzaley, 2011;
Iachini et al., 2009; Light, 1991; Reuter-Lorenz & Sylvester, 2005;
Salthouse & Babcock, 1991). Previous studies have shown that
older adults’ performance in a variety of working memory tasks is
poorer than younger adults’ (Bopp & Verhaeghen, 2009; Brock-
mole et al., 2008; Cowan et al., 2006; Mitchell et al., 2000; Parra,
Abrahams, Logie, et al., 2009; Sander et al., 2011a). These studies
have mostly attributed the deficit to a decrease in the number of
objects that can be held in memory. Here we have isolated a
different component of age-related memory decline: a decrease in
the precision, or resolution, with which individual visual features
can be recalled from visual working memory.

This deficit was observed as an increase in the variability with
which older participants reproduced from memory both the color
and orientation of visual objects. A significant increase in vari-

ability with age was observed when just a single object was held
in memory. However, correlations with age were stronger when
multiple items were maintained, suggesting that VWM deficits in
older individuals may become more prominent under conditions of
high memory load.

Significant correlations were observed between working mem-
ory precision and established tests of STM span (digit span and
Corsi tasks). It is notable that precision was more closely corre-
lated with backward than forward span tasks. The backward tasks
are commonly considered to more directly tap the ability to ma-
nipulate maintained information (Cornoldi & Mammarella, 2008;
Groeger, Field, & Hammond, 1999; Reynolds, 1997) although this
distinction between backward and forward tasks is debated (Rosen
& Engle, 1997). The stronger correlation with the Corsi spatial
task over digit span is consistent with the visuospatial nature of the
precision task.

In line with previous results (Dobbs & Rule, 1989), performance
on the standard tests was found to be more strongly and directly
correlated with participants’ education than with their age. By
contrast, working memory precision displayed a strong relation-
ship with age but was not directly influenced by number of years
in education. In this respect, the precision measure potentially
provides a more direct assessment of age-related cognitive decline
than these commonly used tests of WM ability.

As the adjustment of the probe item was not timed, limits on
motor performance were not expected to influence the precision of
reproduction on this task. Furthermore, the possibility that deteri-
oration in motor accuracy is responsible for the present results is
effectively negated by the observation that effects of age were
strongest in the higher memory load condition. Because the re-
sponse stage of low- and high-load conditions was identical, any
increase in variability due to motor impairment would affect both
conditions equally. Furthermore, because the baseline (young
adult) precision was higher in the one-item condition, effects of
motor impairment would be most apparent in this condition, con-
trary to the present results.

A recent study of school-age children has observed improve-
ments in VWM precision with age during middle childhood and
early adolescence (Burnett Heyes et al., 2012). In combination
with the present results, these findings suggest that changes in WM
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precision may closely track cognitive development and decline
across the life span.

Binding Errors in Older Adults

Previous studies have assessed the effect of aging on visual
working memory using binary (correct or incorrect) measures of
recall, in particular the change detection method in which partic-
ipants judge sequential pairs of images to be the same or different
(Luck & Vogel, 1997; Pashler, 1988; Vogel et al., 2001). These
studies have consistently found a deterioration of performance in
older participants. However, the underlying basis of this deficit is
controversial, particularly with respect to the role of binding, or
associating individual features with objects (Treisman, 1998;
Wheeler & Treisman, 2002).

Cowan, Naveh-Benjamin, Kilb, and Saults (2006) presented
pairs of arrays of colored squares that could differ either in the
addition of a new color (feature change) or a change in which color
belongs with which object (conjunction change). A performance
cost that was specific to older participants was observed in the
conjunction change condition, suggesting that a deterioration in the
ability to maintain binding information may be a separable com-
ponent of age-related decline in VWM.

This finding accords with a number of studies that have shown
age-related deficits in maintaining associations in long-term mem-
ory (Chalfonte & Johnson, 1996; Naveh-Benjamin, 2000; Naveh-
Benjamin, Guez, Kilb, & Reedy, 2004). However, other studies
using similar methods have failed to corroborate a binding deficit
in VWM in older individuals (Brockmole et al., 2008; Parra,
Abrahams, Logie, et al., 2009). Although these studies have ob-
served poorer performance for older participants in conjunction
conditions, they have observed equivalent deficits in conditions
thought not to require feature binding, suggesting that VWM
binding may not be a specific target of age-related decline.

Assessing binding deficits in these previous studies has required
a comparison of frequency of errors in at least two separate
conditions. To take a typical example, Parra, Abrahams, Logie, et
al., (2009) compared change detection accuracy under conditions
where changes were to a single color versus changes to the
conjunction of color-pairs. Performance differed between these
conditions in both young and old participants, and both conditions
were impaired in older participants. Testing for an age-specific
binding impairment therefore depended on assessing whether the
difference in performance between feature and conjunction condi-
tions was greater in old than young participants, and hence a
subtraction of error frequencies (or other performance measures)
across conditions. The meaningfulness of this operation is unclear,
and difficult to assess in the absence of a full mathematical
treatment of how errors are generated on the task.

By contrast, in the present study a measure of the frequency of
misbinding was obtained from responses on a single task in which
observers directly reported remembered features of a probed item.
In the high-load condition, participants were required to report the
color and orientation of one item from a three-item memory array.
The item to report was indicated by a location cue (the probe). So,
if errors occurred in binding features and locations together into
objects, we would expect to see trials in which participants incor-
rectly reported a color or orientation belonging to an item at a
different location to the probe. A previously developed probabi-

listic model (Bays et al., 2009) provides the frequency of these
misreporting errors as one of its parameters. The results showed
that, although rare in younger participants at these memory loads,
misreporting errors indeed made up a substantial minority of
responses for older individuals.

The modeling approach allowed us to place a numerical esti-
mate on the frequency with which nontarget features are reported,
by specifying a circular Gaussian distribution of error around
reported feature values. We also conducted a separate analysis that
did not assume any particular error distribution, but was instead
based simply on the average deviation of responses from nontarget
features. This nonparametric analysis also confirmed a significant
increase in nontarget influence with age.

Previous studies based on change detection have differed in
whether changes in the conjunction condition affected the pairing
of features with locations (e.g., Cowan et al., 2006; Olson et al.,
2004), the pairing of features with other nonspatial features (e.g.,
Parra, Abrahams, Logie, et al., (2009); Parra, Abrahams, Logie, &
Della Sala, 2010), or both (e.g., Brockmole et al., 2008). In the
present study, our misreporting estimate reflected the ability of
subjects to correctly identify which visual features corresponded to
a particular probed location. However, as with previous studies, we
should be wary of concluding that performance reflects only the
recall fidelity of feature-location binding. For example, the color
corresponding to a location could be correctly identified by first
recalling the orientation presented at that location, and then the
color paired with that orientation (although note that the absence of
a significant correlation of misreporting errors between features
may constrain the role for this kind of inference). Future work
should address the extent to which location plays a special role in
binding visual features, and seek to distinguish failures of feature—
location binding from failures of feature—feature binding in healthy
and aging populations.

A recent study (Campbell, Hasher, & Thomas, 2010) using a
paired-associates memory task found increased priming from task-
irrelevant distractors in older participants compared with young
adults. This result is consistent with behavioral results suggesting
older individuals may be impaired in inhibiting irrelevant inputs to
working memory (Cashdollar et al., 2012; Hasher, Zacks, & May,
1999), and EEG studies pointing to an age-related decline in
top-down control over memory allocation (Jost, Bryck, Vogel, &
Mayr, 2011; Sander, Werkle-Bergner, & Lindenberger, 2011b,
2012). A consequence of such deficits is that irrelevant material
may enter working memory, potentially accompanied with binding
information relating it to simultaneously presented task-relevant
inputs. Contrastingly, in the present study all features and objects
presented to subjects were of equal importance to the task and
required maintenance in memory. So, although impairments in
filtering out task-irrelevant information may contribute to cogni-
tive decline in older individuals, they are unlikely to have had a
significant impact on the present results, which we suggest reflect
changes with age in the maximum fidelity with which information
can be encoded into working memory.

Emrich and Ferber (2012), using the same modeling approach as
the present study, examined the effects of interitem separation on
misreporting errors. When memory arrays were flashed briefly
(100 ms or 200 ms), presenting targets in closer proximity in-
creased the frequency of nontarget reports. This effect was reduced
when competing items were distributed between two sequentially
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presented arrays, decreasing competition at the encoding stage.
These results suggest that nontarget error frequency may be in-
flated in brief exposures of crowded displays as a result of incom-
plete or errorful encoding of the display into working memory.
Another study that parametrically varied exposure duration in a
reproduction task (Bays, Gorgoraptis, et al., 2011) also found
evidence for an increase in misreporting responses with very brief
(= 50 ms) masked exposures. However, the main factor determin-
ing nontarget error frequency was the number of items in the array:
Increasing memory load led to more misreporting errors irrespec-
tive of exposure duration (see also Bays et al., 2009).

In the present study, we used relatively widely separated items
(7° min. separation, comparable with the “low-competition” con-
dition in Emrich & Ferber, 2012). Comparison of brief (200 ms)
and prolonged (2 s) array presentations showed no effect of expo-
sure duration on misreporting frequency. The fact that these errors
are common even when observers have the opportunity to study
the array for a prolonged period suggests that they arise principally
from limits on how much information can be stored or maintained
in VWM. Although competition at the encoding stage may con-
tribute to misreporting errors in briefly presented crowded arrays,
it does not appear to have been a significant factor in the present
study.

Although misreporting errors were unaffected, reducing the time
available to encode the memory arrays nonetheless decreased the
accuracy with which participants reported visual features. In terms
of the probabilistic model, this performance cost reflected an
increase in the variability of responses around the correct target
value (Figure 5b) and, in high-load arrays, an increase in the
uniform parameter corresponding to random responses (Figure
5d). These findings again corroborate those previously obtained
for university-age subjects by Bays, Gorgoraptis, et al. (2011),
who argued that errors in recall of briefly flashed arrays reflect
limits on the rate at which information can be encoded into
memory, in addition to limits on memory capacity.

The present results may have important implications in relation
to recent studies that have proposed misbinding as a marker for
Alzheimer’s disease (Parra, Abrahams, Fabi, et al., 2009; Parra,
Abrahams, Logie, & Della Sala, 2010; Parra, Abrahams, Logie,
Méndez, et al., 2010). Those studies, based on the change detection
paradigm, have observed substantial deficits in conjunction con-
ditions in Alzheimer patients and asymptomatic carriers of a
mutation associated with the familial form of the disease. Although
the binding deficit may indeed be stronger in these individuals than
in age-matched controls, the observation here of substantial mis-
binding in older participants chosen from the general population
urges caution in interpreting the mere presence of misbinding as
diagnostic of Alzheimer’s disease in older individuals. It never-
theless remains possible that there are quantitative differences in
binding impairments between healthy, elderly people and those
with Alzheimer’s.

Working Memory Resources

The present results confirm and expand on a number of obser-
vations made previously in younger (university-age) participants
(Alvarez & Cavanagh, 2004; Bays et al., 2009; Bays & Husain,
2008; Gorgoraptis et al., 2011; Lakha & Wright, 2004; Palmer,
1990; Wilken & Ma, 2004). First, we have demonstrated here, for

a wide range of ages, that the fidelity with which visual features
are recalled declines with increasing memory load (Figures 2 and
3), and further that a key component of this loss of fidelity is an
increase in the variability (or SD) of the distribution of responses
centered on the target feature value (Figure 4, left column).

As noted in previous studies of young adults, this decline of
fidelity with load is difficult to reconcile with the influential model
of VWM that considers memory capacity to reflect a fixed number
of independent memory “slots,” each storing a unique visual object
(Cowan, 2001; Luck & Vogel, 1997; Pashler, 1988). Competing
models instead make reference to a working memory resource that
is distributed between elements of a visual scene, with the result
that when more items are stored, each is recalled with less preci-
sion (Bays & Husain, 2008; van den Berg, Shin, Chou, George, &
Ma, 2012).

The distribution of errors on recall tasks has become an impor-
tant topic for distinguishing competing models of VWM. In par-
ticular, the observation that the distribution of errors around target
feature values deviates from Gaussian (or its circular equivalent)
has been interpreted as evidence that a proportion of objects are
not stored (Anderson, Vogel, & Awh, 2011; Zhang & Luck, 2008).
According to these investigators, there is an upper limit on the
number of items that can be held in VWM, either in addition to
resource limitations (Anderson et al., 2011) or as the result of
sharing out a quantized resource between objects (Zhang & Luck,
2008). For memory arrays that exceed this upper limit, there is a
fixed probability on any trial that a probed object will not have
gained access to memory, forcing the observer to guess at random
as to the object’s features. By fitting response data from university-
age subjects with a mixture of Gaussian and uniform distributions,
these investigators obtained frequencies of “random” responses
consistent with an upper limit at two or three objects.

The assumption that deviations of error distributions from
Gaussian should be interpreted as an upper limit on objects stored
has been questioned on a number of grounds (Bays et al., 2009;
Bays, Gorgoraptis, et al., 2011; Bays, Wu, & Husain, 2011; Foug-
nie & Alvarez, 2011; van den Berg et al., 2012). Nonetheless, it is
important to consider whether the effects of age on performance
observed in our study could be explained by a failure to store one
or more of the array objects. This seems unlikely in the low-load
condition, where only one item had to be stored in memory, yet a
significant decline in precision with age was observed. But in the
high-load condition, subjects had to hold three objects in memory,
equivalent to the typical upper limit claimed for university-age
subjects by Zhang and Luck (2008), and hence potentially exceed-
ing the capacity of older subjects.

To test this possibility, the probabilistic model used to fit the
data (Bays et al., 2009) included a uniform component. We found
no significant effect of age on the frequency estimated for uniform
errors (Figure 4, right-hand panels), indicating that random guess-
ing was not responsible for the age-related decline in memory
performance observed here. Instead, poor recall in older partici-
pants resulted from a combination of increased variability in
responses centered on the target value (consistent with a decline in
memory resolution) and an increase in incorrect reports of nontar-
get features (consistent with an increase in binding failures).

Some previous studies based on change detection tasks (e.g.,
Cowan et al., 2006) have concluded that aging decreases the
number of items that can be maintained in memory. However, the
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change detection methodology cannot distinguish between errors
caused by unstored items and errors caused by variability in repre-
sentation of stored items, of the kind demonstrated here. In young
adults, a resource model based on Gaussian variability in memory
representations successfully reproduces the error frequencies typ-
ically observed on change detection tasks, without recourse to an
upper limit on items stored (Bays & Husain, 2008; see also Wilken
& Ma, 2004; van den Berg et al., 2012). Similarly, it is possible
that the deleterious effects of age on precision and binding ob-
served here may be sufficient to account for age-related impair-
ments on change detection tasks, without a change in how many
items are stored. However, we cannot rule out the possibility that
young and old observers differ in the frequency of random re-
sponding at set sizes larger than those tested here.

A recent study by Noack, Lovdén, and Lindenberger (2012)
compared performance of younger and older participants on a
working memory discrimination task (Bays & Husain, 2008).
Unlike the present study, which examined recall of two nonspatial
features (color and orientation), participants in the study of Noack
et al. (2012) were tested on memory for object locations. A
model-fitting procedure, similar to Zhang and Luck (2008), was
used to partition responses into Gaussian-distributed errors and
random guesses. Consistent with the present results, this study
observed a significant increase in Gaussian variability with age. In
addition, the older group was found to have a larger random
component of responses, which Noack et al. (2012) interpreted as
a decrease in the number of items stored. However, unlike the
present study, their analysis did not consider the possibility that
responses could have arisen from incorrectly responding based on
the location of a nontarget item (i.e., misreporting errors). Based
on the present results we would predict an increase in misbinding
color and location in the older group that could account for some
or all of the increase in the “guessing” component in this study.

Comparing model parameters for recall of color and orientation
in the present study revealed a recall advantage for color, both in
terms of the variability of the Gaussian-distributed component of
error and the frequency of misreporting errors. This may represent
a stable difference in the fidelity of internal representation of the
two different feature dimensions. Alternatively, it is possible given
the demanding nature of the task that subjects may have chosen to
focus more resources on encoding and maintaining color than
orientation information. Previous studies using the change detec-
tion methodology have found little or no performance cost asso-
ciated with increasing the number of feature dimensions in mem-
ory (in contrast to increasing the number of features within a
dimension), suggesting that different dimensions do not compete
for the same VWM resources (Luck & Vogel, 1997; Wheeler &
Treisman, 2002). However, one recent study using a continuous
reproduction design has observed small effects of increasing fea-
ture dimensions on recall precision that may indicate a very limited
ability to trade storage of one dimension off against another
(Fougnie, Asplund, & Marois, 2010).

Alternatively, the performance advantages for color over orien-
tation observed here may have arisen independently of changes in
storage fidelity, for example, as a result of enhanced attention to
color selection during the response stage of the task. Importantly,
despite differences in recall fidelity between features, significant
age-related declines in precision and binding were separately ob-
served in both color and orientation responses.

A comparison can be drawn between the effects of age on
memory performance observed here and the effects of memory
load. Increasing the number of items in memory increases both the
variability with which each item is stored and the frequency of
misreporting errors (Bays et al., 2009; Bays, Gorgoraptis, et al.,
2011; Bays, Wu, & Husain, 2011; Gorgoraptis et al., 2011). In the
context of a resource model, these effects are attributed to a
reduction in the WM resources available to maintain each item,
resulting in a loss of fidelity in the storage of both individual
features and the information that binds features into objects. Here
we have observed that increasing age in the adult population
similarly increases both variability in recall and misbinding fre-
quency, suggesting that normal aging may be associated with a
decline in working memory resources.

Both working memory variability and misbinding increase con-
tinuously with memory load in a manner consistent with the
concept of a resource shared between visual objects. Also support-
ing the resource analogy, it is possible to “trade-off” memory
precision between objects, so that behaviorally important items can
be stored with enhanced precision at the cost of increasing vari-
ability for other items (Bays & Husain, 2008; Bays, Gorgoraptis,
et al., 2011; Gorgoraptis et al., 2011). Although the mechanisms of
storage and retrieval may differ between features and bindings, we
hypothesize that the common element is that greater resource
results in greater distinguishabililty of a representation from noise.
In retrieval of an individual feature such as orientation, this means
less variability in the recalled feature value; in retrieval of a
binding between features (e.g., which of the orientations in mem-
ory corresponds to a particular location), this means a reduced
probability of incorrectly retrieving a binding to the wrong feature.

The neural counterparts of working memory resources are yet to
be identified. The age-related decline in resources observed here
could reflect a decline in the number of neurons underlying work-
ing memory, or their responsiveness, or alterations in signaling
across distributed neural networks. One recent study reported that
prefrontal neural firing rates during visual working memory main-
tenance are reduced in aged monkeys, compared with their
younger counterparts (Wang et al., 2011). Such decreases in the
gain of activity in neural populations could reduce the ratio of
signal to noise across a range of computations, consistent with the
properties of a working memory resource outlined above.

In the study of Wang et al., 2011, the decline in activity could
be reversed by iontophoretic application of guanfacine, a norad-
renergic agonist. In humans, there is likely to be an increasing use
of interventions— both drug and nonpharmacological—to improve
working memory function in the elderly. Paradigms such as the
one used here, based on a continuous, analogue response measure,
might provide sensitive means by which to track the efficacy of
such interventions.

Conclusions

In this study, we examined the precision with which adult
participants covering a wide range of ages were able to reproduce
features of simple visual objects from memory. Increasing age was
associated with a decrease in the resolution with which individual
features were recalled, particularly under conditions of greater
memory load. Aging was also linked to a significant increase in the
frequency of errors related to misbinding, that is, errors in associ-
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ating features with objects. These findings are consistent with a
systematic decline in the working memory resources available to
store visual information in older individuals.
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