We support Open Science and aim to make all data and code associated with our published studies available online (click [DATA] or [CODE] links below each title). If you would like data or code not seen here please just ask. We have also created a user-friendly toolbox bringing together models and methods for analysing analogue report tasks.


A dynamic neural resource model bridges sensory and working memory
bioRxiv  doi:10.1101/2023.03.27.534406

Neural tuning instantiates prior expectations in the human visual system
bioRxiv  doi:10.1101/2023.01.26.525790

Representation and computation in working memory REVIEW
PsyArXiv  doi:10.31234/osf.io/kubr9


Perceptual similarity judgments do not predict the distribution of errors in working memory
Journal of Experimental Psychology: Learning, Memory and Cognition  2022 Nov 28. Online ahead of print. doi:10.1037/xlm0001172 ()

Working memory is updated by reallocation of resources from obsolete to new items
Attention, Perception & Psychophysics  2022 Oct 17. Online ahead of print. doi:10.3758/s13414-022-02584-2 ()

Swap errors in visual working memory are fully explained by cue-feature variability
Cognitive Psychology  137 (2022) 101493. doi:10.1016/j.cogpsych.2022.101493 ()

Role of time in binding features in visual working memory
Psychological Review  2023 Jan;130(1):137-154. Epub 2022 Jan 31. doi:10.1037/rev0000331 ()


Mechanisms of feature binding in visual working memory are stable over long delays
Journal of Vision  21(12): 7. doi:10.1167/jov.21.12.7 ()

Transsaccadic integration operates independently in different feature dimensions
Journal of Vision  Jul 6; 21(7): 7. doi:10.1167/jov.21.7.7 ()
Special Issue: “From Peripheral to Transsaccadic and Foveal Perception”

Limited memory for ensemble statistics in visual change detection
Cognition  214: 104763. doi:10.1016/j.cognition.2021.104763 ()

Transsaccadic integration relies on a limited memory resource
Journal of Vision  May 3; 21(5): 24. doi:10.1167/jov.21.5.24 ()
Special Issue: “From Peripheral to Transsaccadic and Foveal Perception”

Location-independent feature binding in visual working memory for sequentially presented objects
Attention, Perception & Psychophysics  83: 2377–2393. doi:10.3758/s13414-021-02245-w ()

Consequence of stroke for feature recall and binding in visual working memory
Neurobiology of Learning and Memory  2021 Jan 15: 107387. doi:10.1016/j.nlm.2021.107387 ()


Stochastic sampling provides a unifying account of working memory limits
Proceedings of the National Academy of Sciences  2020 Aug, 202004306. doi:10.1073/pnas.2004306117 ()

Theory of neural coding predicts an upper bound on estimates of memory variability
Psychological Review  127(5): 700–718. doi:10.1037/rev0000189 ()


The effect of frontoparietal paired associative stimulation on decision-making and working memory
Cortex  117: 266–276. doi:10.1016/j.cortex.2019.03.015 ()

Recall of facial expressions and simple orientations reveals competition for resources at multiple levels of the visual hierarchy
Journal of Vision  19(3): 8. doi:10.1167/19.3.8 ()

Independent working memory resources for egocentric and allocentric spatial information
PLOS Computational Biology  15(2): e1006563. doi:10.1371/journal.pcbi.1006563 ()

Flexible updating of dynamic knowledge structures
Scientific Reports  9(1): 2272. doi:10.1038/s41598-019-39468-9 ()

Functions of memory across saccadic eye movements REVIEW
Current Topics in Behavioral Neurosciences  41:155–183. doi:10.1007/7854_2018_66 ()


Internal but not external noise frees working memory resources
PLOS Computational Biology  14(10): e1006488. doi:10.1371/journal.pcbi.1006488 ()

The ipsilesional attention bias in right hemisphere stroke patients as revealed by a realistic visual search task: neuroanatomical correlates and functional relevance
Neuropsychology  32(7): 850–865. doi:10.1037/neu0000493 ()

New perspectives on binding in visual working memory REVIEW
British Journal of Psychology  110(2): 207–244. doi:10.1111/bjop.12345 ()

Efficient coding in visual working memory accounts for stimulus-specific variations in recall
Journal of Neuroscience  38(32): 7132–7142. doi:10.1523/JNEUROSCI.1018-18.2018 ()

Failure of self-consistency in the discrete resource model of visual working memory
Cognitive Psychology  105: 1–8. doi:10.1016/j.cogpsych.2018.05.002 ()

Drift in neural population activity causes working memory to deteriorate over time
Journal of Neuroscience  38(21): 4859–4869. doi:10.1523/JNEUROSCI.3440-17.2018 ()

Visual working memory is independent of the cortical spacing between memoranda
Journal of Neuroscience  38(12): 3116–3123. doi:10.1523/JNEUROSCI.2645-17.2017 ()

Reassessing the evidence for capacity limits in neural signals related to working memory
Cerebral Cortex  28(4): 1432–1438. doi:10.1093/cercor/bhx351 ()

A neural model of retrospective attention in visual working memory
Cognitive Psychology  100: 43–52. doi:10.1016/j.cogpsych.2017.12.001 ()


Restoration of fMRI decodability does not imply latent working memory states
Journal of Cognitive Neuroscience  29(12): 1977–1994. doi:10.1162/jocn_a_01180 ()

Automatic and intentional influences on saccade landing
Journal of Neurophysiology  118: 1105–1122. doi:10.1152/jn.00141.2017 ()

Neural architecture for feature binding in visual working memory
Journal of Neuroscience  37(14): 3913–3925. doi:10.1523/JNEUROSCI.3493-16.2017 ()

Fidelity of the representation of value in decision-making
PLOS Computational Biology  13(3): e1005405. doi:10.1371/journal.pcbi.1005405 ()

Reduced hippocampal functional connectivity during episodic memory retrieval in autism
Cerebral Cortex  27: 888–902. doi:10.1093/cercor/bhw417 ()


Distinct neural mechanisms underlie the success, precision, and vividness of episodic memory
eLife  5: e18260. doi:10.7554/eLife.18260 ()

A signature of neural coding at human perceptual limits
Journal of Vision  16(11): 4. doi:10.1167/16.11.4 ()

Competition between movement plans increases motor variability: evidence of a shared resource for movement planning
Journal of Neurophysiology  116(3): 1295–303. doi:10.1152/jn.00113.2016 ()

No fixed item limit in visuospatial working memory
Cortex  83: 181–193. doi:10.1016/j.cortex.2016.07.021 ()

Evaluating and excluding swap errors in analogue tests of working memory
Scientific Reports  6: 19203. doi:10.1038/srep19203 ()


Spikes not slots: noise in neural populations limits working memory REVIEW
Trends in Cognitive Sciences  19(8): 431–438. doi:10.1016/j.tics.2015.06.004 ()

Evidence for optimal integration of visual feature representations across saccades
Journal of Neuroscience  35(28): 10146–10153. doi:10.1523/JNEUROSCI.1040-15.2015 ()

A probabilistic palimpsest model of visual short-term memory
PLOS Computational Biology  11(1): e1004003. doi:10.1371/journal.pcbi.1004003 ()

Eye-Search: a web-based therapy that improves visual search in hemianopia
Annals of Clinical and Translational Neurology  2(1): 74–78. doi:10.1002/acn3.154 ()


Noise in neural populations accounts for errors in working memory
Journal of Neuroscience  34(10): 3632–3645. doi:10.1523/JNEUROSCI.3204-13.2014 ()

Changing concepts of working memory REVIEW
Nature Neuroscience  17(3): 347–356. doi:10.1038/nn.3655 ()

Working memory retrieval as a decision process
Journal of Vision  14(2): 2. doi:10.1167/14.2.2 ()

Functional magnetic resonance imaging of impaired sensory prediction in schizophrenia
JAMA Psychiatry  71(1): 28–35. doi:10.1001/jamapsychiatry.2013.2974 ()


Age-related decline of precision and binding in visual working memory
Psychology & Aging  28(3): 729–43. doi:10.1037/a0033236 ()

Dopamine reverses reward insensitivity in apathy following globus pallidus lesions
Cortex  49(5):1292–303. doi:10.1016/j.cortex.2012.04.013 ()

Rapid compensation of visual search strategy in patients with chronic visual field defects
Cortex  49(4):994–1000. doi:10.1016/j.cortex.2012.03.025 ()

Modulation of somatosensory processing by action
Neuroimage  70, 356–362. doi:10.1016/j.neuroimage.2012.12.043 ()

Obligatory encoding of task-irrelevant features depletes working memory resources
Journal of Vision  13(2):21, 1–13. doi:10.1167/13.2.21 ()


Rapid forgetting prevented by retrospective attention cues
Journal of Experimental Psychology: Human Perception & Performance  39(5): 1224–31. doi:10.1037/a0030947 ()

Active inhibition and memory promote exploration and search of natural scenes
Journal of Vision  12(8):8, 1–18. doi:10.1167/12.8.8 ()

Development of visual working memory precision in childhood
Developmental Science  15(4) 528–39. doi:10.1111/j.1467-7687.2012.01148.x ()

Impulsivity and rapid decision-making for reward
Frontiers in Psychology  3: 153. doi:10.3389/fpsyg.2012.00153 ()

Rapid decision-making under risk
Cognitive Neuroscience  3(1): 52–61. doi:10.1080/17588928.2011.613988 ()


Precision of working memory for visual motion sequences and transparent motion surfaces
Journal of Vision  11(14): 2, 1–18. doi:10.1167/11.14.2 ()

Temporal dynamics of encoding, storage and reallocation of visual working memory
Journal of Vision  11(10): 6, 1–5. doi:10.1167/11.10.6 ()

Dynamic updating of working memory resources for visual objects
Journal of Neuroscience  31(23): 8502–8511. doi:10.1523/JNEUROSCI.0208-11.2011 ()

Storage and binding of object features in visual working memory
Neuropsychologia  49: 1622–1631. doi:10.1016/j.neuropsychologia.2010.12.023 ()
Special Issue: “Interactions between attention and visual short-term memory (VSTM)”


Precision versus capacity of working memory in schizophrenic and healthy individuals
Archives of General Psychiatry Online  16 July ()

Integration of goal- and stimulus-related visual signals revealed by damage to human parietal cortex
Journal of Neuroscience  30(17): 5968–5978. doi:10.1523/JNEUROSCI.0997-10.2010 ()


The precision of visual working memory is set by allocation of a shared resource
Journal of Vision  9(10): 7, 1–11. doi:10.1167/9.10.7 ()

Response to comment on “Dynamic shifts of limited working memory resources in human vision”
Science  323: 877. doi:10.1126/science.1166794 ()


Dynamic shifts of limited working memory resources in human vision
Science  321: 851–854. doi:10.1126/science.1158023 ()

Eye movements as a probe of attention REVIEW
Progress in Brain Research  171: 403–411. doi:10.1016/S0079-6123(08)00659-6 ()


Spatial remapping of the visual world across saccades REVIEW
Neuroreport  18(12): 1207–1213. doi:10.1097/WNR.0b013e328244e6c3 ()

Computational principles of sensorimotor control that minimise uncertainty and variability REVIEW
Journal of Physiology  578(2): 387–396. doi:10.1113/jphysiol.2006.120121 ()

Predictive attenuation in the perception of touch
Attention & Performance XXII: Sensorimotor Foundations of Higher Cognition  Oxford University Press (Eds: P Haggard, Y Rosetti, M Kawato) ()

An improvement in perception of self-generated tactile stimuli following theta-burst stimulation of primary motor cortex
Neuropsychologia  45(12): 2712–2717. doi:10.1016/j.neuropsychologia.2007.04.008 ()

Simultaneous bimanual dynamics are learned without interference
Experimental Brain Research  183(1): 17–25. doi:10.1007/s00221-007-1016-y ()


Attenuation of self-generated tactile sensations is predictive, not postdictive
PLOS Biology  4(2): e28. doi:10.1371/journal.pbio.0040028 ()

Actions and consequences in bimanual interaction are represented in different coordinate systems
Journal of Neuroscience  26(26): 7121–7126. doi:10.1523/JNEUROSCI.0943-06.2006 ()

2005 & earlier

Evidence for sensory prediction deficits in schizophrenia
American Journal of Psychiatry  162: 2384–2386. doi:10.1176/appi.ajp.162.12.2384 ()

Perception of the consequences of self-action is temporally tuned and event driven
Current Biology  15: 1125–1128. doi:10.1016/j.cub.2005.05.023 ()

Interference between velocity- and position-dependent force-fields indicates that tasks depending on different kinematic parameters compete for motor working memory
Experimental Brain Research  163: 400–405. doi:10.1007/s00221-005-2299-5 ()

Failure to consolidate the consolidation theory of learning for sensorimotor adaptation tasks
Journal of Neuroscience  24(40): 8662–8671. doi:10.1523/JNEUROSCI.2214-04.2004 ()

Two eyes for an eye: The neuroscience of force escalation
Science  301: 187. doi:10.1126/science.1085327 ()