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Abstract

The precision with which visual information can be recalled from working memory declines

as the number of items in memory increases. This finding has been explained in terms of the

distribution of a limited representational resource between items. Here we investigated how

the sensory strength of memoranda affects resource allocation. We manipulated signal

strength of an orientation stimulus in two ways: we varied the internal (sensory) noise by

adjusting stimulus contrast, and varied the external (stimulus) noise by altering the within-

stimulus variability. Both manipulations had similar effects on the precision with which the

orientation could be recalled, but differed in their impact on memory for other stimuli. These

results indicate that increasing internal noise released resources that could be used to store

other stimuli more precisely; increasing external noise had no such effect. We show that

these observations can be captured by a simple neural model of working memory encoding,

in which spiking activity takes on the role of the limited resource.

Author summary

Investigations of visual short-term memory typically involve memorising clearly visible

objects with elementary features, such as monochromatic disks or oriented bars. Results

of such studies indicate that memory is allocated like a limited resource, i.e. shared out

between objects. However, in daily life we are often confronted with visual features that

are difficult to make out, like when an object is in shadow, or poorly-defined, like the

color of a variegated leaf. Here we asked whether these kinds of features occupy as much

memory resource as simple highly-visible objects. Our results demonstrate that reducing

the sensory strength of a stimulus makes the quality of recall worse, but also takes up less

resource so other objects can be remembered more precisely. Increasing the variability

within a stimulus worsens recall, but has no effect on how other objects are remembered.

These findings can be explained by considering how visual information is stored in popu-

lations of neurons: only the manipulation of sensory strength changes the amount of spik-

ing activity dedicated to a stimulus.
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Introduction

The fidelity with which items are stored in visual working memory (VWM) depends on the

total number of elements in a visual scene. As the number of items increases, their representa-

tions in memory become increasingly variable, leading to less precise recall of each item [1–3].

These findings are consistent with a resource model of VWM, which describes a limited repre-

sentational medium that is allocated to objects within a visual scene [1, 4–11]. Consistent with

the resource concept, rather than an even storage resolution for all remembered objects, it has

been shown that resources can be flexibly distributed. Both external (e.g. visual salience) and

internal (e.g. behavioral relevance) factors can lead to enhanced storage resolution of an object,

but with a corresponding cost to the fidelity of other items held in memory [12–19]. Note that

some authors argue there is a fixed upper limit on the number of stimuli that working memory

resources can be allocated to (e.g. [20]), but this is not a topic of the present study.

A recently proposed neural resource model [21, 22] has provided a biological account of

behaviorally observed VWM limitations that is consistent with neurophysiological findings

[23–25]. In this neural model, items are encoded in a population of tuned neurons that fire sto-

chastically according to a Poisson process. The total activity in the neural population is con-

stant across changes in set size, as the result of a global normalization mechanism (see [11] for

further discussion and e.g. [26, 27] for neurophysiological evidence of analogous mechanisms).

Therefore, increasing the set size leads to a decrease in the activity of neurons encoding each

item, providing a biological basis for limited resources. As the neural signal representing each

object decreases, internal representations become dominated by random noise in spiking

activity, leading to a decrease in memory precision. Neural noise, an inherent feature of neural

processing [28], therefore determines the fidelity of internal representations and represents the

limiting factor on VWM performance.

Since storing each additional element in VWM takes resources away from existing items, it

is of importance to understand what determines an object’s share of resource. One candidate

as a limiting factor is the strength of the sensory stimulation, which determines the extent to

which noise in the visual system can corrupt the stimulus representation. The importance of

the visual system’s internal noise has long been recognized (e.g., [29]) and many studies have

aimed to characterize its effects on detection and discrimination performance [30–34]. In a

recent study [35], using an analogue report task with a single item, internal noise was modu-

lated by varying the contrast of the orientation stimulus to be reported. Results showed preci-

sion declined as contrast decreased. A population coding model successfully accounted for the

detailed pattern of errors by decreasing the total activity in the neural population. One intui-

tive prediction arising from this model is that, in the case of multiple items, the neural resource

(spiking activity) released when storing a low contrast item could be used to store other items.

Often, efficient visual processing is not only hampered by internal noise in the visual sys-

tem, but also by stimulus uncertainty (i.e. external noise) which is intrinsic to natural circum-

stances. The complexity of our visual environment is likely to preclude an even distribution of

resources, but it is less clear how exactly stimulus variance affects resource allocation. It has

been demonstrated that increasing the external (stimulus) noise leads to poorer performance

in perceptual tasks [36–39]. For example, judging the average feature value from an array

becomes less accurate as uncertainty increases, i.e. as the variance of elements in the relevant

feature dimension increases (e.g. [39]). A recent study [40] demonstrated that external noise

had an opposing effect to internal noise on perceptual biases, consistent with a model of effi-

cient coding [41].

The present study aimed to investigate resource distribution among memoranda with dif-

fering sensory strengths and variabilities. Using a cued recall task we looked for changes in
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recall precision while manipulating the stimulus in order to vary the influence of either inter-

nal (Experiment 1) or external (Experiment 2) noise. We found similar effects of changing

internal or external noise on recall of the noisy stimuli themselves. However, the consequences

for other stimuli in memory differed, indicating that only changes to internal noise released

neural resources that could be used to store other stimuli more precisely.

Results

Experiment 1

To investigate working memory resource allocation among stimuli affected to different

degrees by internal noise, we presented participants with pairs of orientation stimuli of varying

contrasts (Fig 1a). One stimulus on each trial had fixed high contrast while the contrast of the

other varied as a percentage of each participant’s detection threshold. To capture performance

on this task we calculated the mean absolute deviation of recall responses from the mean of the

response distribution. Fig 2a depicts these values for low noise (blue circles) and variable noise
(red circles) stimuli. Error distributions for each stimulus and contrast level are shown in

Fig 3a & 3b. All distributions, except for the 0% and 75% contrast variable-noise stimuli, dis-

played significant central tendency (V > 63.8, p< 0.001).

Overall, participants performed better when recalling low noise than variable noise stimuli

(F(1,8) = 839.7, p< 0.001, Z2
p = 0.99; ANOVA, contrast × probed stimulus) and when total

noise in a trial decreased (F(3, 24) = 14.3, p< 0.001, Z2
p = 0.64). A significant stimulus

contrast × probed stimulus interaction was observed (F(3, 24) = 37.4, p< 0.001, Z2
p = 0.82)

consistent with a benefit on variable noise stimulus recall and detriment on low noise stimulus

recall as contrast of the variable noise stimulus increased.

To test this statistically, we compared recall performance on trials when both Gabors had

high (400%) contrast with trials where contrast of one Gabor was zero. Recall of variable noise
stimuli improved with increasing contrast (t(8) = 14.2; p< 0.001). Critically, recall

Fig 1. Experimental task. (a) Experiment 1. Two orientation stimuli were presented followed by a delay, then one location was probed at random and subjects

adjusted the probe bar to match the remembered orientation at that location. Stimuli varied in contrast. Participants were subsequently asked for a confidence rating.

(b) Experiment 2. Two composite stimuli were presented each containing four orientations. After a delay, one location was probed and participants reported the

average orientation they recalled at that location. Stimuli differed in the variability of their component orientations.

https://doi.org/10.1371/journal.pcbi.1006488.g001
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performance for low noise stimuli worsened as the contrast of the variable noise stimulus

increased (t(8) = 3.2, p = 0.013). These results indicate that increasing the internal noise associ-

ated with one stimulus has a beneficial effect on recall of the other stimulus, consistent with a

transfer of working memory resources from the noisier to the less noisy stimulus.

Confidence ratings. Subjective confidence for the presence of the variable noise stimulus

was significantly correlated with both stimulus contrast (r2 = 0.87, t(8) = 52.4, p< 0.001) and

performance (r2 = 0.93, t(8) = 152, p< 0.001). Participants’ mean confidence ratings were: 0%

contrast, mean rating 11%; 75%, 14%; 100%, 23%; 150%, 59%; 400%, 92%. Testing for associa-

tion of performance and confidence ratings within each contrast condition showed significant

correlations except for the lowest (stimulus present) and highest contrasts: 75% contrast,

r2 = 0.06, t(8) = 1.53, p = 0.16; 100% contrast, r2 = 0.12, t(8) = 3.40, p = 0.009; 150% contrast,

r2 = 0.15, t(8) = 8.14, p< 0.001; 400% contrast, r2 = 0.03, t(6) = 0.61, p = 0.56. In both 75% and

400% contrast conditions the absence of correlation can be explained by a strong restriction in

the range of confidence ratings used, with 65.2% and 77.5% of trials classified as 0% and 100%

confident in 75% and 400% contrast conditions, respectively.

Neural resource model fits. We fit recall errors with a neural resource model based on

population coding (Fig 5) [21, 22, 35]. In the model, total activity of neurons encoding both

stimuli is normalized, such that a fixed amount of spiking activity is shared between stimuli.

Curves in Figs 2a and 3a & 3b show fits of the model with maximum likelihood (ML) parame-

ters (population gain γ = 58.5 Hz ± 12.1 Hz, tuning width κ = 2.48 ± 0.26, response bias

β = –0.004 rad ± 0.020 rad, contrast function parameters σ = 1.78 ± 0.17 and α = 9.09 ± 2.66).

Fig 2. Recall variability. (a) Mean absolute deviation of responses as a function of contrast of the variable noise stimulus in Experiment 1. Empirical data for

recall of low noise and variable noise stimuli are plotted as blue and red circles, respectively (error bars indicate ±1 SE). Blue and red curves show corresponding

predictions of the neural resource model with ML parameters. (b) Recall variability as a function of concentration of the variable noise stimulus in Experiment

2. (c) Recall variability on single stimulus trials in Experiment 2. Dashed lines indicate chance level performance.

https://doi.org/10.1371/journal.pcbi.1006488.g002
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The model provided an excellent quantitative fit to both mean angular deviation (mean indi-

vidual r2 = 0.94; range 0.89–0.97; aggregated data r2 = 0.97; Fig 2a) and response histograms

(Fig 3a & 3b), successfully capturing the trade-off in recall performance between low noise and

variable noise stimuli with changes in noise level.

Sequential presentation. It is possible that, because the two simultaneously presented sti-

muli differed in salience, visual attention may have been automatically drawn to the higher

contrast stimulus, resulting in a more detailed encoding. In other words, the observed effects

could be due to competition for attentional rather than memory resources. To address this we

conducted a follow-up experiment in which low noise and variable noise stimuli were pre-

sented sequentially (see Methods). The results confirmed the key findings of the original

experiment in which items were presented simultaneously, providing evidence against compe-

tition for attention as the basis for our results. Fig 4a depicts mean absolute deviations for low
noise (blue circles) and variable noise (red circles) stimuli, while Fig 4b shows error distribu-

tions for each stimulus and contrast level. All distributions, except for the 0% contrast

variable-noise stimuli, displayed significant central tendency (V> 30.1, p< 0.019).

Specifically, participants showed better performance when recalling low noise than variable
noise stimuli (F(1,9) = 168.4, p< 0.001, Z2

p = 0.95; ANOVA, contrast × probed stimulus) and

Fig 3. Recall errors and model fits. (a & b) Consequences of varying internal noise (Experiment 1): different panels correspond to different levels of contrast for the

variable noise stimulus. Error distributions are plotted for the low noise stimulus (a, blue) and variable noise stimulus (b, red). Data points and errorbars show

empirical recall errors (mean ±1 SE). Colored curves and patches show predictions of the neural resource model with ML parameters (mean ±1 SE). A single plot is

shown far right for the condition in which both stimuli had the same (low) noise. (c & d) Consequences of varying external noise (Experiment 2): plots as in (a & b).

https://doi.org/10.1371/journal.pcbi.1006488.g003
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when total noise in a trial decreased (F(3, 27) = 4.8, p< 0.01, Z2
p = 0.35). Again, the stimulus

contrast × probed stimulus interaction was significant (F(3, 27) = 13.1, p< 0.001, Z2
p = 0.59)

reaffirming a benefit to variable noise stimulus recall and detriment to low noise stimulus recall

as the variable noise stimulus strengthened.

The significant interaction was further explored by comparing performance between trials

on which both Gabors had high (400%) contrast with trials where contrast of one Gabor was

zero. As the contrast of the variable noise stimulus increased, recall of variable noise stimuli

improved (t(9) = 17.8; p< 0.001) and recall of low noise stimuli worsened (t(9) = 3.8,

p< 0.01), just as observed with simultaneous presentation.

Next, we tested for effects of presentation order on recall performance. A repeated measures

ANOVA (contrast × presentation order) of low noise stimulus recall showed a significant

effect of contrast level (F(4, 36) = 5.4, p< 0.01), but no significant effect of presentation order

(F(1, 9) = 1.72, p = 0.22) nor any interaction (F(4, 36) = 1.26, p = 0.30). The same results were

obtained when analyzing variable noise stimulus recall. ANOVA showed a significant effect of

Fig 5. The neural resource model. (a & b) Stimulus features were encoded in the activity of idealized contrast sensitive and orientation selective neurons; preferred

orientations were evenly distributed in orientation space. (c) Normalisation operated across the whole population, scaling summed activity to a fixed level determined

by a gain constant. (d) Neurons generated spikes stochastically according to a Poisson process, with mean firing rate determined by the normalized input of each

neuron. Orientation recall was modeled as maximum likelihood decoding of the spiking activity over a fixed time window. (e) Examples of error distributions

predicted by the neural resource model.

https://doi.org/10.1371/journal.pcbi.1006488.g005

Fig 4. Sequential presentation experiment. (a) Mean absolute deviation of responses as a function of contrast of the variable noise stimulus. Empirical data for recall

of low noise and variable noise stimuli are plotted as blue and red circles, respectively (error bars indicate ±1 SE). Blue and red curves show corresponding predictions

of the neural resource model with ML parameters. Dashed line indicates chance level performance. (b) Recall errors and model fits. Consequences of varying internal

noise: different panels correspond to different levels of contrast for the variable noise stimulus. Error distributions are plotted for the low noise stimulus (a, blue) and

variable noise stimulus (b, red). Data points and errorbars show empirical recall errors (mean ±1 SE). Colored curves and patches show predictions of the neural

resource model with ML parameters (mean ±1 SE). A single plot is shown far right for the condition in which both stimuli had the same (low) noise.

https://doi.org/10.1371/journal.pcbi.1006488.g004
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contrast level (F(3, 27) = 11.46, p< 0.001) but non-significant effects of presentation order

(F(1, 9) = 0.52, p = 0.49) and no interaction (F(3, 27) = 2.29, p = 0.10).

Neural model. We fit the data with the same neural resource model used for the simulta-

neous-presentation task. Fits are shown as curves in Fig 4a & 4b (ML parameters: population

gain γ = 102.95 Hz ± 17.54 Hz, tuning width κ = 1.54 ± 0.26, response bias β = 0.013

rad ± 0.014 rad, contrast function parameters σ = 1.96 ± 0.37 and α = 9.56 ± 2.41).

Encoding failures. The neural resource model followed [35] in assuming that the activity

associated with a stimulus is a continuous (Naka-Rushton) function of contrast. In the previ-

ous study this model was shown to provide a superior account of recall data (for a single item)

than a probabilistic encoding model, in which contrast affected the probability of encoding a

stimulus in an all-or-nothing fashion. Although orthogonal to the purposes of the present

study, we nonetheless examined this and several other related models based on the principle

that the variable noise stimulus might fail to be encoded on some subset of trials (see Support-

ing Information for full methods and results). Formal model comparison favored the neural

resource model over all alternatives tested, for both simultaneous and sequential versions of

Exp 1.

Experiment 2

The goal of this experiment was to explore working memory resource allocation among sti-

muli with differing amounts of external noise. On each trial we presented participants with

two composite stimuli each consisting of a set of Gabors of differing variance. For one, low
noise stimulus, within-set variance was always zero (all Gabors were parallel), while orienta-

tions for the other, variable noise stimulus were sampled from distributions of different widths.

Participants were required to report from memory the average orientation of a probed

stimulus.

Fig 2b plots performance for variable noise (red circles) and low noise (blue circles) stimuli.

Error distributions for each stimulus and contrast level are shown in Fig 3c & 3d. All distribu-

tions, except for the zero precision (random) variable-noise stimulus, displayed significant

central tendency indicating better-than-chance performance (V> 122.2, p< 0.001). Recall

was more precise for low noise than variable noise stimuli (F(1,9) = 201.5, p< 0.001, Z2
p = 0.96),

and when the total amount of noise on a trial decreased (F(3,27) = 28.7, p< 0.001, Z2
p = 0.76).

A significant stimulus contrast × probed stimulus interaction was again observed

(F(3,27) = 16.37, p< 0.001, Z2
p = 0.65).

Next, we compared performance on trials with contrasting amounts of noise, i.e. variable
noise stimuli in which all orientations were alike (κ =1) versus those drawn from a uniform

distribution (κ = 0). A decrease in the noise level of the variable noise stimulus increased recall

performance for that stimulus (t(9) = 13, p< 0.001), but had no effect on recall of the other,

low noise stimulus (t(9) = 1.52, p = 0.16). In contrast to the findings of Exp 1, therefore, chang-

ing the amount of external noise for one stimulus did not influence recall of the other, consis-

tent with a fixed resource allocation in the presence of changing stimulus noise.

We examined whether participants’ estimates were biased towards particular elements of

composite stimuli. To this end, we distinguished the four elements in each set by location rela-

tive to fixation: horizontal near, horizontal far, vertical above, vertical below. We observed no

significant differences in the mean absolute deviation of responses around the orientations of

the different component elements (location × noise level ANOVA; location: F(3,27) = 0.8,

p = 0.51; interaction: F(9,81) = 1.7, p = 0.10), indicating that participants were not systemati-

cally biased towards particular elements, and suggesting that participants sampled all the ele-

ments on a roughly equal basis to estimate the average orientation of the stimulus.
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Single stimulus trials. Orientation recall on trials with a single low-noise stimulus was sig-

nificantly better than recall of low noise stimuli in any of the two-stimulus conditions (Fig 2c;

t(9)> 4.67; p< 0.001). We compared performance on single stimulus trials in Exp 2 with per-

formance on trials in Exp 1 where contrast of the variable noise stimulus was zero. The differ-

ence did not reach significance (t(17) = 0.09; p = 0.92). These results indicate that the task of

remembering a single composite stimulus in Exp 2 was comparable to the task of remembering

a single high contrast orientation stimulus in Exp 1.

Comparison with Experiment 1. To confirm the pattern of results differed significantly

between Exps 1 and 2, we performed an ANOVA on recall of low noise stimuli on trials with

contrasting levels of variable noise stimulus (lowest and highest). We found a significant inter-

action between noise level and experiment (F(1,17) = 11.68, p< 0.01). This interaction was

driven by a non-significant difference in performance between the two lowest noise conditions

(i.e. 400% contrast and κ =1; t(17) = 0.08, p = 0.94) coupled with a significant difference

between highest noise conditions (i.e. 0% contrast and κ = 0; t(17) = 5.52, p< 0.001).

Model fits. The neural resource model treats storing the average of a set of orientations

identically to storing a single orientation stimulus. It assumes that the averaging process intro-

duces variability in the stored value and this is proportional to the variability in the sample ori-

entations. ML fits of the model are shown as curves in Figs 2b and 3c & 3d (population gain

γ = 98.1 Hz ± 73.9 Hz, tuning width κ = 2.29 ± 0.32, response bias β = 0.014 rad ± 0.013 rad,

scaling parameter s = 0.898 ± 0.135). The model again provided an excellent fit to data, captur-

ing both mean angular deviation (mean individual r2 = 0.88, range 0.72–0.97; aggregated data

r2 = 0.96; Fig 2b) and response histograms (Fig 3c & 3d), and successfully reproduced the effect

of external variability on variable noise stimulus recall while displaying no effect on low noise
stimuli.

Discussion

Recent research has established that, as the working memory resource available to store an

item decreases (e.g. as the number of items increases), recall of that item becomes more noisy.

Here we address the converse question: does storing a stimulus with a greater level of noise

require less resource? We considered two methods of manipulating the noise associated with a

stimulus: (1) decreasing the sensory strength of the stimulus, which increases the influence of

internal noise, and (2) increasing the intrinsic variability of a stimulus, a modulation of exter-

nal noise.

We found that both noise manipulations had similar effects on the fidelity with which a

stimulus could be recalled. However, they differed in their effects on recall of other items in

memory. We found that increasing internal noise in one stimulus, by decreasing its contrast,

had a favourable effect on recall of another (low-noise) stimulus. Increasing external noise, by

raising internal variability of a stimulus, had no effect on memory for another stimulus. These

results indicate that increases in internal, but not external, noise reduce the resource required

to store a stimulus.

To account for these patterns of performance, we fit a variant of the neural resource model

[21] to the behavioral data. In this model, stimulus features are encoded in spiking activity of a

neural population. The total population activity is fixed, representing a finite resource that can

be distributed between memoranda. This model has previously been shown to successfully

reproduce the patterns of human recall error observed with changes in set size and shifts in

stimulus priority [21].

When the contrast of a stimulus decreased, the firing rate associated with that stimulus in

the model decreased as well, matching typical behavior of visual neurons in the brain. As a
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consequence, the representation was more influenced by stochasticity in spiking activity, and

this had the consequence of poorer recall performance for that stimulus. Furthermore, due to

normalization, the reduced activity devoted to the low contrast stimulus had the contingent

effect of enhancing activity for another stimulus stored alongside it. In other words, dedicating

less of the fixed neural activity to encoding the weak signal released resources that could be

used to encode another signal more precisely. This model successfully captured not only the

trade-off in precision between items of different sensory strengths (Fig 2), but also the detailed

pattern of response errors in recall of each stimulus (Fig 3).

Next, we used the same population coding model to fit the observations under different lev-

els of stimulus variability (external noise). Previous studies indicate that forming ensemble

representations is a fundamental feature of the visual system [42–45], and that extracting sum-

mary statistics, such as averages, from a visual scene occurs automatically [46]. Here, we

hypothesised that the averaging process would introduce variance in the stored estimate that

was proportional to the variance in the samples, but have no effect on the overall firing rate of

neurons encoding the stimulus. Storage of the calculated average orientation in working mem-

ory was treated identically to storing a single stimulus orientation. With these assumptions,

the neural resource model successfully captured behavioral observations from the experiment.

Increasing levels of external noise decreased the precision with which a stimulus could be

recalled, but did not necessitate unequal allocation of neural activity, meaning that there was

no contingent effect on other, simultaneously-stored stimuli. Note that at least one prediction

of this account, that an averaged stimulus is represented with the same level of activity regard-

less of the variability in its component values, would be open to testing using single-cell or

imaging techniques.

The two experiments differed slightly in the placement of stimuli in the visual field, in that

the orientation stimuli in Exp 2 were presented on average a little more peripherally, and over

a broader range of eccentricity, than the stimuli in Exp 1. Given that eccentricities of the two

memory items presented on each trial were always equal, we are not aware of any reason why

stimulus eccentricity would influence resource distribution between them, nor of any related

mechanism that could account for the qualitative difference in results between Exps 1 and 2.

Previously it has been suggested that errors in working memory tasks can be explained by a

doubly stochastic model, in which there is variability in the precision with which items are rep-

resented [5–7, 47]. Although the population coding model has only one source of stochasticity,

a mathematical similarity between variable precision and the population coding model has

been highlighted previously [21], and may explain the success of variable precision models in

reproducing empirical error distributions. Because a process for generating variability is not

specified in these models, however, they make no clear predictions about the effects of stimulus

strength on performance: it is therefore difficult to see how they could account for the present

results in anything but an ad hoc fashion.

At a more abstract level, it has been suggested that working memory can be viewed as a

fixed capacity information channel [48]: this accounts for decreases in precision with set size

and, with an appropriate choice of loss function, even predicts the specific error distributions

observed in recall tasks [49] (although not currently swap errors; see below). Like the variable

precision model, this model may be best seen as operating at a different conceptual level rather

than being a competitor to the neural resource model. Unlike the neural resource model, this

model cannot offer an explanation as to why less information is stored about a weaker stimu-

lus, but it may be able to account for the consequence that more information is stored about

other stimuli.

Swap errors, in which a wrong (i.e. unprobed) item is reported, are an important compo-

nent of working memory performance at higher set sizes and when spatial confusability is high
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[4, 50, 51]. However, they are typically found to be vanishingly rare when, as here, only two

well-separated items are presented for recall. A recent extension to the neural resource model

based on conjunctive coding has demonstrated that swap errors can be explained using the

same neural mechanism as response variability [22]. Future work using larger stimulus arrays

could examine the effects of stimulus strength on swap errors.

We considered the possibility that the precision trade-off between low and high contrast

stimuli in Exp 1 arose from biasing of visual attention towards the higher contrast item due

to its greater perceptual salience. We repeated the experiment with a sequential mode of pre-

sentation, such that only one stimulus was visible on the screen at a time. As with simulta-

neous presentation, the results showed that recall precision for a stimulus of fixed high

contrast varied with the contrast of the other stimulus presented on the same trial, confirm-

ing that our effects are due to competition for memory, rather than attentional, resources.

This is consistent with previous results demonstrating that resources are distributed between

memory stimuli similarly when presented sequentially as when presented simultaneously

[14].

The seemingly continuous decline in recall precision of low noise stimuli with increasing

variable noise contrast could reflect a mixture of trials in which (1) the variable noise stimu-

lus was not encoded and the low noise stimulus was stored with high precision, and (2)

both stimuli were encoded and precision of the low noise stimulus was thereby reduced,

according to resource principles. Although this alternative account of the data would be no

less consistent with allocation of a limited memory resource, we nonetheless addressed this

possibility by fitting a number of alternative models that incorporated encoding failures in

different ways (see Supporting Information). Consistent with results of [35], we found that

the neural resource model had a consistent advantage in accounting for the data in each

case.

Whether or not there exists a threshold for conscious perception is a debate with a lengthy

history and a substantial existing literature, which we will not attempt to review here. Thresh-

old models of various kinds have typically not fared well in comparison to signal detection the-

ory in capturing psychophysical performance [52], but there is continuing disagreement in the

field [53–55]. While the present results of model comparison, like those of [35], are consistent

with a graded view of perception, in which even the weakest signals are (weakly) encoded, we

do not imagine the present study can provide a definitive resolution to this question.

In summary, using a cued recall task and manipulating the signal strength of memoranda,

we found that changing levels of internal, but not external noise, frees working memory

resources, which can then be allocated to other items in the visual scene. These results are con-

sistent with a neural resource model of working memory, in which representational fidelity is

limited by a fixed total activation in neural populations encoding the stimuli.

Methods

Ethics statement

The study was approved by the Cambridge Psychology Research Ethics Committee.

Participants

Thirty-one participants (10 males, 21 females; aged 18–33) took part in the study after giving

informed consent in accordance with the Declaration of Helsinki. All participants reported

normal color vision and normal or corrected-to-normal visual acuity.
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Apparatus

Stimuli were presented on a 21-inch gamma-corrected CRT monitor with a refresh rate of

60 Hz. The monitor was fitted with a neutral density filter to decrease the luminance range to

the level of human detection thresholds. Participants viewed the monitor in a dark room at a

distance of 50 cm, with head stabilized by a forehead and chin rest. Eye position was moni-

tored online at 1000 Hz using an infrared eye tracker (SR Research). Stimulus presentation

and response registration were controlled by a script written in Psychtoolbox 3.0.14 (Pelli,

1997) and run using Matlab 2016b (The Mathworks Inc.).

Experiment 1

Ten participants (3 males, 7 females; aged 20–29) took part in Experiment 1. In this experi-

ment, we tested how internal noise affects working memory performance by manipulating

stimulus contrast.

Visual stimuli consisted of randomly oriented Gabor patches (wavelength of sinusoid, 0.75˚

of visual angle (1.33 cpd); s.d. of Gaussian envelope, 0.75˚) presented on a grey background. A

central fixation dot and two circles (white, 2˚ radius), located 5˚ to the left and to the right of

the fixation dot were present throughout each trial. The circles served as placeholders for the

Gabor patches.

We first obtained a detection threshold for each participant using the adaptive Psi method

[56]. On each trial (100 in total) a Gabor patch of random orientation was presented for 200

ms within one of the two placeholder circles, randomly chosen; participants reported the side

on which they saw the stimulus by a mouse click in the area inside the placeholder. Detection

threshold was determined as the contrast level corresponding to 75% correct performance,

estimated by fitting a cumulative normal function to the data. Contrast level on each trial was

chosen to maximize the expected gain in information of the fitted psychometric parameters.

The main part of Experiment 1 was a cued recall task that tested memory for orientation

(Fig 1a). Each trial started with presentation of the central fixation dot (gray) and placehold-

ers. Once a stable fixation was recorded, the fixation dot turned white for 500 ms, followed

by presentation of a memory display consisting of two randomly oriented Gabor patches for

200 ms. The contrast level of one patch (randomly chosen) was always 400% of the previ-

ously obtained detection threshold (low noise stimulus). The contrast level of the other

Gabor was chosen at random from {0%, 75%, 100%, 150%, 400%} of detection threshold

(variable noise stimulus).

After a 1000 ms blank retention interval, one of the two stimuli was randomly cued for

recall. The cue consisted of a second, larger circle drawn around one of the placeholders and

overlaid with a randomly-oriented bar. Using a mouse, participants adjusted the bar orienta-

tion to match the remembered orientation corresponding to the cued location. Once partici-

pants had made their response, a second cue was presented at the location of the variable noise
patch and participants indicated how confident they were that a patch had been presented at

that location by clicking on one of five buttons labelled {0%, 25%, 50%, 75%, 100%}.

Trials on which gaze deviated more than 2˚ from the fixation dot before the cue was pre-

sented were restarted with new random orientations. Participants completed 400 trials. One

participant was excluded from analysis because data indicated poor comprehension of the con-

fidence task instructions (uniform distribution of confidence ratings across all contrasts).

Sequential experiment. We performed a follow-up experiment based on Exp 1 but

intended to minimise attentional competition between stimuli. Ten new participants (3 males,

7 females; aged 20–30 years) participated in the experiment. Experimental setup and proce-

dure were identical to Exp 1 with the exception that the two memory stimuli on each trial were
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presented sequentially, for 200 ms each, separated by a 200 ms blank. For each participant the

order of stimulus presentation was consistent throughout the experiment, either left-then-

right or right-then-left, with counterbalancing across participants. This was done to remove

any unpredictability as to where attention should be directed during a trial. To ensure tempo-

ral predictability, the first stimulus on each trial was presented at a fixed delay of 500 ms from

the onset of the fixation dot. The order of low noise and variable noise stimuli was chosen at

random on each trial. Eye movements were not recorded in this experiment.

Experiment 2

Eleven participants (4 males, 7 females; aged 18–33 years) took part in Experiment 2. In this

experiment we examined how external noise affected working memory performance by

manipulating stimulus variability. Except where indicated, the procedure and stimulus timing

were identical to Exp 1.

Stimuli consisted of randomly oriented Gabor patches (wavelength of sinusoid, 1.5˚ of

visual angle (0.67 cpd); s.d. of Gaussian envelope, 0.9˚) assembled in sets of four and presented

on a grey background. Throughout the trial a central fixation dot and two placeholder circles

(white, 3.5˚ radius), located 6˚ to the left and right of the fixation dot, were present.

On each trial, two sets of Gabor patches were presented for 1000 ms, one in each place-

holder circle (Fig 1b). Participants were required to memorize the mean orientation of each

set. The four patches within each set were positioned with equal spacing on an invisible circle

(radius 2˚), centered inside the placeholder and rotated randomly from trial to trial.

The variability of one set (left or right, randomly selected) was fixed at zero, i.e. all constitu-

ent Gabor patches had the same orientation (low noise stimulus). The variability of the other

set (variable noise stimulus) was determined by sampling orientations from a von Mises distri-

bution with randomly-assigned mean and concentration (inverse variability) chosen from

{0, 1, 2, 5,1}. Note that a von Mises with concentration of zero is equivalent to a uniform dis-

tribution, i.e. patches had random orientations, while an infinite concentration meant that all

patches had the same orientation.

Cue and response were the same as in Exp 1. Confidence ratings were not obtained in Exp

2. Participants completed 400 trials with two sets of Gabors as described above. On an addi-

tional 40 trials (randomly interleaved), to obtain a measure of baseline performance, a single

low noise set was presented (randomly left or right) and cued for recall. One participant was

excluded due to reporting on debriefing that they had ignored high noise stimuli.

Analysis

Orientations were analysed and are reported with respect to the circular parameter space of

possible values, i.e. the space of possible orientations [−90˚, 90˚) was mapped onto the circular

space [−π, π) radians. Recall variability was assessed as the mean absolute deviation of recall

errors from the mean of the error distribution. Tests of central tendency were performed using

the V test [57] on pooled data within each condition. When testing model fits, estimates of the

parameters were obtained separately for each subject over all experimental conditions using a

nonlinear optimization algorithm (fmincon in MATLAB).

Population coding model

We modeled orientation and contrast information presented at each stimulus location as

providing input to an independent subpopulation ofM neurons (Fig 5). The unnormalized

response of the ith neuron responding to the jth stimulus was defined as the product of a von
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Mises (bell-shaped) orientation tuning function and a Naka-Rushton contrast response func-

tion:

fijðyj; cjÞ ¼ gijðyjÞhjðcjÞ; ð1Þ

gijðyjÞ ¼
1

I0ðkÞ
exp ðk cos ðyj � φijÞÞ; ð2Þ

hjðcjÞ ¼
caj

sa þ caj
; ð3Þ

where θj is the orientation of the jth stimulus, cj is its contrast, φij is the neuron’s preferred

orientation, κ is a scale parameter for the tuning function, σ and α are parameters of the con-

trast response function, and I0(�) is the modified Bessel function of the first kind with order

zero. Preferred orientations were evenly distributed throughout the circular space of possible

values.

Normalization operated over the entire population of neurons, such that the post-normali-

zation output of a neuron (its firing rate) was given by:

rij ¼
g

M
fijðyj; cjÞ

P
k‘fk‘ðy‘; c‘Þ

; ð4Þ

where γ is the population gain (i.e. summed population activity). Assuming that the distribu-

tion of tuning curves provides a dense uniform coverage of the orientation space (valid for

largeM), the summed activation of the population is independent of stimulus orientation and

Eq 4 simplifies to:

rij ¼
g

M
gijðyjÞ

hjðcjÞ
P

‘
h‘ðc‘Þ

: ð5Þ

Spiking activity was modeled as a homogeneous Poisson process, such that the probability

of a neuron generating n spikes in time T was:

Pr½nij� ¼
ðrijTÞ

nij

nij!
expð� rijTÞ: ð6Þ

Recall of the orientation of a probed item p was modelled asmaximum a posteriori (MAP)

decoding of feature information from the population’s spiking activity, n, over a decoding

period Td. Assuming a uniform prior, this is equivalent to maximizing the likelihood:

ŷ MAP ¼ arg max
yp

Pr ½njyp�: ð7Þ

If two or more orientations tied for the maximum, the decoded value was sampled at random

from the tied values. The output of the model was given by ŷ ¼ yMAP � b, where β is a response

bias term, and� indicates addition on the circle. For simplicity we fixed the decoding period

Td to 1 s (changing this value would merely result in a corresponding change to the estimated

gain parameter γ, e.g. setting Td = 0.1 s would multiply the gain by 10).

In Exp 2, each stimulus consisted of a set of Gabor patches with varying orientation, and

participants were required to store in memory the mean orientation of the patches. We

assumed that the concentration (inverse variability) of the estimated mean was directly

proportional to the concentration of the distribution from which the orientations were
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sampled, i.e.

yj � VMðm0j; sk
0
jÞ; ð8Þ

where m0j and k0j are the mean and concentration of the sampled distribution, s is a constant of

proportionality, and VM(μ, κ) is a von Mises distribution with mean μ and concentration κ.

In order to fit the model to data, instead of relying on Monte Carlo simulation, we used a

number of previously-obtained analytical results that provided a direct way of estimating the

distribution of errors predicted under the model, on the assumptionM!1; details of these

methods can be found in Bays (2016); code is available at www.bayslab.com/code/JN14. In fit-

ting the data from Exp 1, the model had five free parameters: κ, γ, α, σ, and β. In Exp 2, stimu-

lus contrasts were fixed and identical for all stimuli, making parameters σ and α unnecessary,

but the input orientations θj were now random variables controlled by the proportionality

parameter s; the model therefore had four free parameters: κ, γ, β and s.

Supporting information

S1 Text. Supporting information. Comparison with models incorporating probabilistic

encoding.

(PDF)

S1 Fig. Model comparison. AIC scores relative to the score of the best fitting neural resource

model. AIC values for simultaneous and sequential version of experiment are shown in blue

and red, respectively.

(TIF)

S1 Table. Maximum likelihood parameter estimates for simultaneous and sequential ver-

sions of Experiment 1. PE, probabilistic encoding model; PE-V, probabilistic encoding model

with varying precision: PC-EF, population coding model with encoding front-end; PC-CT,

population coding model with contrast threshold.

(TIF)
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