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The process of encoding a visual scene into working memory has previously been studied using binary measures of recall.
Here, we examine the temporal evolution of memory resolution, based on observers’ ability to reproduce the orientations
of objects presented in brief, masked displays. Recall precision was accurately described by the interaction of two
independent constraints: an encoding limit that determines the maximum rate at which information can be transferred into
memory and a separate storage limit that determines the maximum fidelity with which information can be maintained. Recall
variability decreased incrementally with time, consistent with a parallel encoding process in which visual information from
multiple objects accumulates simultaneously in working memory. No evidence was observed for a limit on the number of
items stored. Cuing one display item with a brief flash led to rapid development of a recall advantage for that item. This
advantage was short-lived if the cue was simply a salient visual event but was maintained if it indicated an object of
particular relevance to the task. These cuing effects were observed even for items that had already been encoded into
memory, indicating that limited memory resources can be rapidly reallocated to prioritize salient or goal-relevant information.
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Introduction

Working memory (WM) refers to a short-term store for
the maintenance and manipulation of information obtained
from the senses (Baddeley & Hitch, 1974; Cowan, 1995;
Logie, 1995; Miller, Erickson, & Desimone, 1996). While
primary sensory representations are continuously over-
written by new input, representations in WM are both
longer lasting and more durable (Phillips, 1974; Sperling,
1960), providing a protected workspace for input to inform
perceptual judgments, decision making, and action selection.
The process by which sensory input is transferred into

WM is an important topic of both behavioral and neuro-
physiological studies (Chun & Potter, 1995; Duncan,
Ward, & Shapiro, 1994; Enns & Di Lollo, 1997; Jolicoeur
& Dell’Acqua, 1998; Palva, Kulashekhar, Hämäläinen, &
Palva, 2011). In the visual domain, the time course of

transfer has been explored using a masking procedure in
which a stimulus array is replaced, after a variable exposure
duration, by a pattern mask (Breitmeyer, 1984). This
overwrites preceding sensory input, thereby halting its
encoding into visual WM. A subsequent test of recall of
the array provides an estimate of how much information
was transferred in the period of exposure preceding the
mask (Gegenfurtner & Sperling, 1993; Shibuya & Bundesen,
1988; Vogel, Woodman, & Luck, 2006; Woodman &
Vogel, 2005).
This technique has demonstrated that encoding into

WM is slower when there are more elements in the array,
indicating a limit on processing capacity. Studies using
this procedure have estimated the encoding rate to be on
the order of 20–100 ms per item. However, the correct
interpretation of this figure is debated. It may be a direct
reflection of a serial process, in which integrated object
representations are transferred one by one into WM
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(Hoffman, 1979). Alternatively, it may be an indirect
measure of a capacity-limited parallel process, in which
visual input is continuously encoded into WM at a rate
determined by total stimulus load (Shibuya & Bundesen,
1988). It has proven difficult to distinguish between these
two hypotheses, in part because previous studies were based
on binary (correct/incorrect) measures of recall performance.
In contrast to this binary approach, methods for

examining the fidelity with which visual information is
stored are becoming of increasing importance in WM
research (Alvarez & Cavanagh, 2004; Bays, Catalao, &
Husain, 2009; Bays & Husain, 2008; Brady, Konkle, &
Alvarez, 2011; Elmore et al., 2011; Fougnie, Asplund,
& Marois, 2010; Palmer, 1990; Wilken & Ma, 2004;
Zhang & Luck, 2008). One consequence of this new
approach has been a reconsideration of the traditional
concept of WM capacity as reflecting a limited number of
independent memory “slots” (typically 3–4) each storing
one object (Cowan, 2001; Luck & Vogel, 1997; Pashler,
1988). Newer models instead propose a unitary working
memory resource that is distributed between elements of
a visual scene: the more items are stored, the less precisely
each can be recalled (Alvarez & Cavanagh, 2004; Bays
et al., 2009; Bays & Husain, 2008; Wilken & Ma, 2004).
Critically, these models allow for flexibility in allocation,
such that WM resources can be preferentially directed
toward a salient or behaviorally important object to
enhance the resolution of its storage (Bays & Husain,
2008, 2009).
Here, we investigated the temporal evolution of working

memory precision, based on observers’ ability to reproduce
the orientations of objects presented in masked displays of
varying size and duration. We characterize two indepen-
dent constraints on WM capacity: a storage limit that
determines the maximum fidelity with which visual
information can be maintained and an independent encod-
ing limit that sets the rate at which this capacity is filled.
We further examined the process of memory realloca-

tion by cuing a single item within the memory array. The
results demonstrate changes in recall precision consistent
with a redistribution of resources toward the cued item,
with a corresponding cost to uncued items. The time
course of reallocation depends on the behavioral relevance
of the salient cue event, indicating a competition between
bottom-up and top-down influences for control of the
contents of WM. Recall precision provides a simple but
effective index to track the deployment of working
memory resources over time.

General methods

Procedure

A total of 68 subjects (25 males, 43 females, aged 18–
36 years) participated in the study after giving informed

consent. All subjects reported normal color vision and had
normal or corrected-to-normal visual acuity. Stimuli were
displayed on a 21W CRT monitor with a refresh rate of
140 Hz. Subjects sat with their head supported by a chin
rest and viewed the monitor at a distance of 60 cm. Eye
position was monitored online at 1000 Hz using an
infrared eye tracker (SR Research, Canada).
In all experiments, a trial began with the presentation

of a central fixation cross (white, 0.75- of visual angle)
against a gray background. Once a stable fixation was
recorded on the cross, a memory array was presented,
consisting of a number of colored oriented bars (0.3- � 2-)
randomly distributed around fixation at eccentricities in
the range of 3-–6-, with a minimum center-to-center
separation of 3- between items (example in Figure 1a).
Each bar had a different color, and each bar’s orientation
was independently chosen at random from the full range
of possible orientations (0-–180-).
The duration of display of the memory array was varied

between trials and experiments. At the end of this exposure
period, the memory array was replaced by a pattern mask,
presented for 100 ms. A single (probe) bar was sub-
sequently presented at fixation, with a color corresponding
to one of the items in the preceding memory array.
Subjects used an input dial (PowerMate USB Multimedia
Controller, Griffin Technology, USA) to adjust the
orientation of the probe item to match the remembered
orientation of the item of the same color in the memory
array (the target). The probe’s initial orientation was
randomly assigned. Accuracy was stressed, and responses
were not timed. Any trial on which gaze deviated more
than 2- from the central cross during presentation of the
memory array was aborted and restarted with new feature
values.

Analysis

A measure of recall error was obtained on each trial in
each experiment by calculating the angular deviation
between the orientation reported by the subject and the
correct (target) orientation. For each combination of subject
and display time (and cue validity in Experiments 2–4),
we calculated the recall bias, defined as the mean of the
recall error, and precision, defined as the reciprocal of the
standard deviation of the error. As in previous studies
(Bays et al., 2009; Bays, Wu, & Husain, 2011; Gorgoraptis,
Catalao, Bays, & Husain, 2011), we used the definition of
standard deviation for circular data given by Fisher (1995)
and subtracted from the precision estimate the value
expected by chance (i.e., if the subject had responded at
random on each trial).
To quantify the contribution of different sources of

error to overall precision estimates in each experiment,
we applied a probabilistic model introduced by Bays et al.
(2009; see also Zhang & Luck, 2008). This model
attributes the distribution of responses on the reproduction
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task to a mixture of three components (illustrated in
Figure 3a) corresponding to: reporting the target orienta-
tion (top), mistakenly reporting one of the other (non-
target) orientations in the memory array (middle), and
responding at random (bottom). Orientations of all
memory array items are recalled with Gaussian variability.
Mathematically, the model is described by the follow-

ing equation:

p �̂
� �

¼ !7. �̂j E
� �

þ "
1

m
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i

7. �̂j 8i

� �
þ +
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where E is the true orientation of the target item, �̂ is the
orientation reported by the subject, and 7. is the von
Mises distribution (the circular analogue of the Gaussian)
with mean zero and concentration parameter .. The
probability of reporting the correct target item is given
by !. The probability of mistakenly reporting a non-target
item is given by ", and {81, 82, I 8m} are the orientations
of the m non-target items. The probability of responding
randomly is given by + = 1 j ! j ".
Maximum likelihood estimates of the parameters !, ", + ,

and . were obtained separately for each subject and

experimental condition using an expectation–maximization
algorithm. The optimization procedure was repeated from a
range of different initial parameter values to ensure that
global maxima were obtained. Concentration . was con-
verted to the more familiar standard deviation, A, according
to the method of Fisher (1995).
Hypotheses regarding the effects of experimental

parameters (exposure duration, array size) on recall
precision and on each component of the mixture model
were tested by analysis of variance (ANOVA). In Experi-
ments 2–4, t-tests were used to test for precision
advantages for valid over invalid or neutral trials and for
neutral over invalid trials.
Analysis code is available online at http://www.sobell.

ion.ucl.ac.uk/pbays/code/JV10/.

Experiment 1

This experiment investigated the observers’ ability to
reproduce from memory the orientations of objects
presented in masked displays of varying size and duration.
Previous studies testing recall of memory arrays with

Figure 1. Assessing effects of exposure duration on recall of orientation. (a) The recall task used in Experiment 1. An array of colored
oriented bars was presented for a variable exposure duration, followed by a pattern mask. After a blank retention interval, a probe bar
appeared and subjects used a response dial to adjust its orientation to match the item with the same color in the memory array (the
target). The angular difference between response and target orientations was taken as a measure of recall error. (b) Three hypotheses
regarding the evolution of recall precision with exposure time, as a function of the number of items in the memory array. Here, lighter
shades indicate more items stored in memory. The top panel is based on an assumption of limited storage capacity: as more items are
stored, the maximum attainable precision declines. The middle panel depicts the case of limited encoding capacity: Eventually, the same
level of precision is reached regardless of array size. Finally, the lower panel shows expected performance when both storage and
encoding capacities are limited. Compare these possible results with the actual findings in Figure 2a.
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unmasked displays have shown that the precision with
which each visual item is stored declines rapidly as the
number of items increases (Bays et al., 2009; Bays &
Husain, 2008; Wilken & Ma, 2004). Figure 1b illustrates
three hypotheses regarding the encoding of information
into memory that are consistent with this finding.
One possibility (illustrated in the top panel) is that all

items are initially encoded at a fixed rate, but a limit on
memory capacity means that precision reaches a plateau at
a maximum value that depends on the total number of
items in the array. Thus, when two items are stored, each
is recalled with lower precision than if only one is stored.
An alternative possibility (middle) is that the maximum
precision of storage is independent of memory load, but
encoding is faster when there are fewer items; hence,
precision may still depend on array size unless the display
time is very long. The final possibility (bottom) is that
both the maximum storage precision and the rate of
encoding into memory depend on array size, with the two
processes independently influencing precision of recall for
any given display time.

Methods

Thirty-two subjects participated in Experiment 1. The
procedure is illustrated in Figure 1a. The number of items
in the memory array varied between subjects, with array
sizes of 1, 2, 4, or 6 items, each tested in a different set of
8 subjects. Each item’s color was chosen randomly from a
set of easily distinguishable colors (black, white, red, green,
blue, yellow, magenta, cyan). The duration of display of the
memory array varied between trials. Each subject com-
pleted 800 trials in total, consisting of 100 randomly
interleaved trials at each of 8 different display durations:
25, 50, 75, 100, 125, 300, 500, and 1000 ms. At the end
of this exposure period, the memory array was replaced
by a pattern mask for 100 ms, then by a blank interval
of 1000 ms, followed by a single probe bar at fixation.
We calculated recall bias and precision for each

combination of subject and display time based on error
in reporting the target orientation. To capture the relation-
ship between recall precision (P) and display duration (t),
we fit an equation of the form:

PðtÞ ¼ Að1j ejt=CÞ: ð2Þ
A system obeying this RC equation (named after the
Resistor–Capacitor electronics circuit that displays the
same behavior) has the property that the rate of increase
( _P) at time t is directly proportional to the difference
between the current and maximum values (i.e., the
“unfilled” capacity):

_P tð Þ ¼ _P0

Pmaxj PðtÞ
Pmax

� �
: ð3Þ

The temporal evolution of recall precision can, therefore,
be fully described by just two parameters: the maximum
precision Pmax, and the initial rate _P0. In previous studies
(Bays et al., 2009; Bays & Husain, 2008) using unmasked
displays, the relationship between precision of storage and
the number of items stored was accurately captured by a
power law: P ò Nj1. For each subject in the present
study, we obtained least squares fits of a power law
relationship between number of items (N) and each of the
parameters describing precision (Pmax and _P0).
To examine the contribution different sources of error

made to recall in this experiment, we fit a probabilistic
model to the response data (see General methods section).
Because the model fitting is data-intensive, and trials were
divided between a large number of different memory array
durations, for the purposes of this analysis, we binned
trials into one of three duration ranges: short (25–50 ms),
intermediate (75–300 ms), and long (500–1000 ms).

Results and discussion

The fidelity of recall can be characterized by two
parameters, bias and precision. Bias indicates a systematic
tendency to deviate from the correct target orientation in
the same direction from trial to trial. No significant biases
were observed for any array size or exposure duration
(p 9 0.05). Precision measures the degree to which
responses cluster around the correct orientation: A pre-
cision of zero indicates that responses are randomly
distributed relative to the target.
Consistent with previous findings, recall precision

declined as the number of items in the memory array
increased (Figure 2a, symbols; F1,30 = 40.2, p G 0.001). In
addition, precision varied substantially with exposure
duration (F1,30 = 90.7, p G 0.001). Examining perfor-
mance for each set size independently (different colors in
Figure 2a), a consistent pattern was observed, consisting
of an initial rapid rise in recall precision as exposure was
increased from the minimum duration, followed by
saturation at longer display times as precision approached
an asymptotic level.
More specifically, the relationship between precision

and display time at each set size was accurately captured
by an RC curve (Figure 2a, dotted lines), in which the rate
of increase in precision at each time point is proportional
to the remaining “unfilled” capacity, i.e., the difference
between current and asymptotic precision values (see
Methods section).
Each RC curve is described by two parameters: an

initial rate (plotted in Figure 2b), corresponding to the slope
of the curve at time zero, and a storage limit (Figure 2c),
corresponding to the maximum value to which the curve
asymptotes at long durations. Both the storage limit and
the initial rate declined significantly with increasing
number of items (limit: F1,30 = 28.4, p G 0.001; rate:
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F1,30 = 52.4, p G 0.001), consistent with the hypothesis
illustrated in Figure 1b (bottom).
Figure 2b shows the relationship between encoding rate

and the number of items in memory (N). A power law
provided a good fit to the data (R2 = 0.93), with the power
constant being almost exactly one (1 = 1.01 T 0.14).
Thus, this result is consistent with a simple inverse
relationship between encoding rate (initial rate of change
of precision, _P0) and array size, i.e., _P0 ò 1/N.
By contrast, the relationship between number of items

and maximum precision (the storage limit) was very
different. Previous studies (Bays et al., 2009; Bays &
Husain, 2008) using long exposures have observed a
power law relationship (P ò Nj1) relating the number of
items in an array (N) to the precision with which each
item is stored (P). A similar relationship was observed in
the present study (green line, Figure 2c; R2 = 0.96).
However, although the power constant that best fit the
data (1 = 0.60 T 0.12) was consistent with that obtained in
a previous study based on an orientation discrimination
task (1 = 0.69; Bays & Husain, 2008), it was significantly
different from that between number of items and rate of
encoding (t6 = 3.7, p = 0.007).
Thus, although both storage and encoding into working

memory can be related to N by a power function, encoding
rate fell more rapidly with increasing number of items
(compare Figures 2b and 2c).

The precision measure used thus far to describe
performance is a non-parametric statistic reflecting the
fidelity of recall of the target orientation, independent of
any particular model of the underlying response distri-
bution. To investigate how different possible sources of
error contribute to memory precision at different exposure
durations, we applied to the data a previously developed
probabilistic model (Bays et al., 2009, 2011; Gorgoraptis
et al., 2011) that describes the response distribution in terms
of three different types of error (illustrated in Figure 3a; see
General methods section for details).
The first source of error is Gaussian variability in recall

of the target orientation (Figure 3a, top). Black symbols in
Figure 3b plot the standard deviation of the Gaussian error
component for each set size as a function of display
duration (short: e50 ms; intermediate: 75–300 ms; long:
Q500 ms). Consistent with previous results, recall varia-
bility increased significantly with increasing number of
items (F1,30 = 5.8, p = 0.022). Furthermore, recall
variability decreased significantly with increasing exposure
time (F1,30 = 5.0, p = 0.034).
A second source of error arises in multiple-item arrays,

where subjects on occasion mistakenly report the
orientation of one of the non-target items in the
preceding array (Figure 3a, middle). Results of a previous
study (Bays et al., 2011) indicated that these errors are due
to misbinding, i.e., errors in recalling which color belongs

Figure 2. Temporal evolution of working memory precision. (a) Recall precision as a function of exposure duration and number
of array items (N). Precision is defined as the reciprocal of the standard deviation of error in the reproduction task. Error bars indicate
T1 SE. Dashed lines indicate RC curves (see Methods section) with parameters that best fit the temporal evolution of recall precision
at each array size. (b) The initial rate of encoding into memory was estimated from the rate parameter of the fitted RC curve (inset).
The initial rate (black symbols) declined with array size according to a simple inverse relationship (i.e., rate proportional to 1/N, red
curve). (c) The upper limit on precision was estimated from the capacity parameter of each RC curve (inset). This storage limit (black
symbols) declined with array size more slowly than encoding rate, following a power law relationship (i.e., maximum precision proportional
to Nj1, green curve).
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with which orientation (Allen, Baddeley, & Hitch, 2006;
Robertson, 2003; Treisman, 1998; Wheeler & Treisman,
2002; Wolfe & Cave, 1999). The frequency of binding
errors is shown by the blue symbols in Figure 3b. Consistent
with previous results, misbinding frequency increased with
increasing memory load (F1,30 = 49.2, p G 0.001). Binding
errors were also more frequent at the briefest display times
(short vs. intermediate: F1,30 = 8.7, p = 0.006), but their
frequency subsequently appeared to plateau at a value
determined by array size (intermediate vs. long: F1,30 = 0.7,
p = 0.73).
A final source of error corresponds to responses

randomly distributed relative to target and non-target
orientations (Figure 3a, bottom). These errors may occur
when no information about the target orientation has been
stored and subjects simply “guess” at random. Like
misbinding errors, random responses (red symbols in
Figure 3b) increased in frequency with increasing number
of items in the array (F1,30 = 21.1, p G 0.001), making a
substantial contribution to the response distribution at the
largest set sizes (48% of responses for 6-item arrays at the
shortest display times).
Crucially, however, the frequency of random responses

fell rapidly toward zero as exposure duration increased,
with no indication of a plateau as observed for misbind-
ing (short vs. intermediate: F1,30 = 36.8, p G 0.001;

intermediate vs. long: F1,30 = 9.4, p = 0.005). This finding
is important for comparison with studies that have
attempted to measure WM storage capacity based on very
briefly displayed (e200ms) memory arrays (e.g., Anderson,
Vogel, & Awh, 2011; Zhang & Luck, 2008; see General
discussion section).
In this experiment, we used presentation of a masking

stimulus as a probe into the time course of WM encoding.
One assumption of this approach is that replacing the
memory array with a pattern mask halts encoding of the
memory items but does not significantly disrupt the visual
information that has already entered working memory
storage. An alternative possibility is that there exists a
“window of integration” over which period visual infor-
mation from the array and the mask cannot be fully
differentiated, resulting in a noisy representation of the
array entering memory.
This possibility was convincingly addressed by a

previous study using the same masking technique to probe
WM (Vogel et al., 2006). If the effects of masking a
briefly presented array are due to sensory integration, it
should not matter in which order the mask and array are
presented; however, these authors showed that a mask that
strongly disrupted recall when presented after the array
had no effect on performance when presented before. This
strongly supports the conclusion that performance costs

Figure 3. Components of error in the working memory task. (a) The distribution of responses was decomposed into a mixture of three
separate components: responses distributed with Gaussian variability around the correct (target, T) orientation (top), responses
distributed around the orientations of other, non-target (NT) items in the memory array (middle), and random responses distributed
uniformly throughout the response space (bottom). (b) Maximum likelihood estimates of parameters of the mixture model illustrated in
(a), for different array sizes and exposure durations. Gaussian variability in target responses (black symbols) increases with array size
but decreases with exposure duration. The frequencies of non-target (blue) and random (red) responses also increase with array size.
Note that random responding declines rapidly with increasing exposure duration, but non-target (misbinding) errors maintain a constant
frequency at intermediate and long durations. Error bars indicate T1 SE.
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associated with presenting a mask after the array (as in the
present study) are primarily due to halting encoding
before WM capacity is reached rather than sensory
integration between the mask and array.

Experiment 2

Previous studies have demonstrated that memory
resources can be flexibly allocated to prioritize storage
of a cued array item (Bays & Husain, 2008; Gorgoraptis
et al., 2011). Experiment 2 was designed to investigate the
time course of this cuing effect.

Methods

Sixteen subjects participated in Experiments 2A and 2B
(8 in each). Each trial began with presentation of a fixation
cross, followed by a memory array, as in Experiment 1.
The memory array on each trial consisted of two colored
bars (one blue, one red) with randomly selected locations
and orientations. A white disk (the cue) was briefly flashed
at the location of one of the two items simultaneously

with the onset of the memory array (25-ms duration,
2.5- diameter; example in Figure 4a).
The duration of the memory array varied between trials,

with each subject completing 150 trials at each of 4
different display durations (100, 200, 400, 800 ms),
randomly interleaved. This allowed us to examine the
consequences of initial cuing on performance over time. At
the end of this exposure period, the memory array was
replaced by a pattern mask for 100 ms, followed by a
single probe bar at fixation. Subjects adjusted the
orientation of the probe bar to match the item of the same
color in the memory array. Central fixation was enforced
as above.
For subjects in Experiment 2A, the cue was predictive

of the subsequent probe: On two out of three trials
(randomly interleaved), the color of the probe item
corresponded to the memory item cued by the white disk.
For subjects in Experiment 2B, the cue was non-predictive:
The probe item was equally likely to have the color of
either item in the memory array.
Note that, in line with previous studies (e.g., Vogel et al.,

2006), Experiment 1 included a blank retention interval
following the mask, before presentation of the probe
stimulus. In tasks examining recall of unmasked stimuli,
such a retention interval is necessary to prevent short-
lived iconic memory traces contributing to performance,

Figure 4. Assessing cuing effects on recall performance. (a) The recall task used in Experiment 2. Memory arrays consisted of two
randomly oriented bars (one red, one blue). A randomly selected bar was cued by a briefly flashed white disk presented simultaneously
with the onset of the memory array. After a variable post-cue display period, in which the memory array remained visible, a pattern mask
was presented. Subjects adjusted a probe bar to reproduce the orientation of one of the array items, as in Experiment 1. (b) The recall
task used in Experiment 3. The procedure was identical to Experiment 2, except that the memory array was displayed for 1000 ms before
one of the bars was cued, in addition to the variable post-cue display period. In Experiments 2A and 3A, the cue predicted which item
would be probed on 2/3 trials; in Experiments 2B and 3B, the cue was not predictive of the probe.
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but as iconic memory is also erased by a pattern mask
(Coltheart, Laming, Routh, & Broadbent, 1983; Sperling,
1960), this delay is not essential to the present experi-
ments. Therefore, to ensure any cuing effects observed in
Experiment 2 reflected allocation of resources during
array presentation rather than processes occurring during
maintenance (e.g., shifts of attention within the memory
representation; Griffin & Nobre, 2003), the retention

interval was not included in Experiment 2 or the
subsequent cuing experiments.

Results and discussion

In this experiment, subjects were tested on their recall of
two-item memory arrays, similar to those in Experiment 1.

Figure 5. Time course of cuing effects on encoding and maintenance. (a) Recall precision as a function of exposure duration when a
predictive cue was presented at array onset, for trials on which memory was probed for the cued item (valid trials, black) and non-cued
item (invalid trials, red). Error bars indicate T1 SE. Asterisks indicate time points at which there was a significant recall advantage for cued
over non-cued items (p G 0.05). Dotted vertical line and shaded area indicate onset and duration of the cue event. (b) Recall precision
plotted as in (a) but for subjects presented with non-predictive (task-irrelevant) cues. Note that, unlike for predictive cuing, the advantage
for the cued item is abolished at longer exposure durations. (c) Recall precision for predictive cues presented after 1000-ms exposure to
the memory array, plotted as a function of post-cue display time. Note that high-resolution representations of both items are already stored
in memory at the time of cue presentation (0-ms condition). Asterisk indicates a cued item advantage with borderline statistical
significance (p = 0.054). (d) Recall precision for non-predictive cues after 1000-ms exposure. Note that the cued item advantage is again
abolished at longer exposures.
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Simultaneous with the onset of the memory array, one item
was highlighted by a very brief flash (the cue; Figure 4).
The effect of this cuing event on the subsequent encoding
and storage of the array items was examined by compar-
ing recall performance for the cued and non-cued items
(Figure 5). The post-cue display time was varied to assess
the evolution of cued/non-cued differences in the time
following the cue event.
Figure 5a shows recall precision for cued (black) and

non-cued items (red) in Experiment 2A, in which the cue
was predictive of which item would be probed (cued items
were probed twice as frequently as non-cued items). No
differences in recall precision were observed when
exposure time was brief (e200 ms; t7 G 1.1, p 9 0.16),
but for display durations of 400 ms and longer, a significant
recall advantage was observed for the cued item (t7 9 2.3,
p G 0.03).
Figure 5b shows performance in Experiment 2B, which

was identical except that the cue was non-predictive of
the probe (recall was tested for cued and non-cued items
with equal frequency). In this case, a small recall advantage
for the cued item was observed at 400 ms (t7 = 2.2, p =
0.034), but the effect was short-lived, with no evidence for
a difference in recall at 800 ms (t7 = 0.5, p = 0.61).
The observation of a precision advantage for the flashed

item even when the flash was irrelevant to the memory
task implies that a recall advantage can develop “bottom-
up” in response to salient elements in the visual environ-
ment. However, the effect of task-irrelevant cues was
rapidly abolished with continuing presentation of the array,
while the effect of predictive cues was maintained, consis-
tent with an additional “top-down” mechanism enhancing
storage of items that are relevant to current goals.

Experiment 3

Because the cue was presented simultaneously with
onset of the memory array in Experiment 2, the observed
effects on recall could reflect either preferential encoding
or preferential allocation of memory to the cued item. To
distinguish between these possibilities, in Experiment 3,
the cue was presented only after the memory array had
been visible for 1000 ms (Figure 4b), sufficient time for
both items to be fully encoded into memory.

Methods

Twelve subjects participated in Experiments 3A and 3B
(6 in each). The protocol was identical to Experiment 2
except that the memory array was displayed for 1000 ms
before cue onset, so encoding of the array itself could not
be a limiting factor on performance (Figure 4). The cue
was displayed for 25 ms, and subsequent duration of the

memory array following the cue event varied between
trials as above. Each subject completed 200 trials at each
of 4 different post-cue display durations (100, 200, 400,
800 ms) as well as 200 trials in a baseline (0 ms) condition
where the mask was displayed at 1000 ms without a
preceding cue event. All trial conditions were randomly
interleaved. As above, the cue was predictive of the
subsequent probe in Experiment 3A and non-predictive in
Experiment 3B.

Results and discussion

Figure 5c shows recall precision for cued and non-cued
items when a predictive cue was presented after 1000 ms
as a function of the subsequent post-cue display time.
As expected, in a baseline (0 ms) condition with no cue,

array items were recalled with similar precision (1.6 radj1)
to that observed in Experiment 1 for the same array size
and display time (1.3 radj1). This is consistent with our
prediction that encoding of both items into memory would
be completed by the time of cue presentation in this
experiment. Nonetheless, following presentation of the
cue, a significant recall advantage developed for the cued
item (Figure 5c). Note that this effect of cuing was present
at a shorter post-cue exposure duration than when the cue
was presented at onset (200 ms: t5 = 2.6, p = 0.02), as well
as being observed at subsequent time points (400 ms:
t5 = 3.0, p = 0.015; 800 ms: t5 = 1.9, p = 0.054).
The effects of a non-predictive cue at 1000 ms are

shown in Figure 5d. A significant cue advantage was
observed, again at a shorter exposure duration (200 ms: t5 =
3.3; p = 0.023) than for a cue at onset. However, as when
a non-predictive cue was presented at onset (Figure 5b),
the advantage for the cued item was abolished at longer
post-cue display times (400 ms: t5 = 0.3, p = 0.40; 800 ms:
t5 = 1.3, p = 0.13).
The differences in time course between predictive and

non-predictive cue effects confirm the findings of
Experiment 2 that recall precision is influenced by both
“bottom-up” (salience-based) and “top-down” (goal-
based) mechanisms. The present results further demon-
strate that the enhancement of recall for cued items can
occur even once both items have been fully encoded into
memory, indicating a reallocation of previously allocated
memory resources to reflect the change in relative priority
of the stimuli.
To investigate which of the possible sources of error

was responsible for the difference in recall precision
between cued and non-cued items, we applied the proba-
bilistic model illustrated in Figure 3a to the data from
Experiments 2 and 3. A significant interaction between
cue validity and post-cue duration was observed for the
standard deviation of the Gaussian error component
(F1,19 = 6.7, p = 0.018), indicating that variability was
lower for cued than non-cued items at longer post-cue
durations. No significant validity or validity � duration
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effects were observed for non-target (F1,19 = 2.4, p = 0.14)
or uniform (F1,19 = 0.6, p = 0.45) components of the
model. Hence, the effects of cuing do not reflect changes
in the probability that the cued item is stored but rather the
resolution of its storage.

Experiment 4

The results of Experiments 2 and 3 suggest that working
memory resources can be rapidly reallocated to a cued
item in order to store it with greater fidelity. A strong
prediction of this hypothesis is that the increase in recall
precision for a cued item will coincide with a decrease in
precision for other items, which now receive a smaller
proportion of memory resources. In order to test this
hypothesis, in Experiment 4, we interleaved cue trials, in
which we predicted that memory resources would be
preferentially allocated to the item highlighted by the
flash, with baseline (neutral cue) trials designed to
encourage equal distribution of resources between items.

Methods

Eight subjects participated in Experiment 4. Exper-
imental parameters were chosen to maximize cuing
effects, based on results of the previous experiments:
Cues were predictive of the probe and presented after
1000 ms, followed by a post-cue exposure duration of
400 ms. The protocol was identical to Experiment 3A,

except for the addition of a neutral cue condition in
which white disks were flashed at the locations of both
array items. Both items were flashed on these trials to
control for general alerting effects of the cue event,
independent of which item is cued. Each subject com-
pleted 608 trials in total, consisting of 304 valid cue trials
(probe matched the cued item), 152 invalid cue trials
(probe matched the non-cued item), and 152 neutral cue
trials (both items were cued), randomly interleaved.

Results and discussion

As expected, cuing condition had a substantial effect
on the precision with which array items were recalled
(Figure 6a). Recall for cued items, on valid trials, was
significantly better than the baseline precision measured
on neutral cue trials (t7 = 2.1, p = 0.04). Consistent with
the resource reallocation hypothesis, baseline performance
was, in turn, superior to recall of non-cued items,
measured on invalid trials (t7 = 3.7, p = 0.004).
Figure 6b shows the best-fitting parameters of the

probabilistic model (Figure 3a) obtained for responses in
each cuing condition. Non-target (blue symbols) and
random responses (red symbols) made negligible contribu-
tion to the response distribution (G3% of responses) and did
not vary between cue conditions (F2,14 G 2.4, p 9 0.13). In
contrast, variability in the Gaussian response compo-
nent varied significantly with cue condition (F2,14 = 5.6,
p = 0.016), in a manner consistent with the overall effect
on precision (valid G neutral: t7 = 2.1, p = 0.04; neutral G
invalid: t7 = 1.8, p = 0.05).

Figure 6. Recall of cued and non-cued items relative to baseline. (a) Recall precision in Experiment 4 on invalid and valid cue trials, in
which one array item was cued with a flash, and on neutral cue trials, in which both items were flashed. Cues were presented after
1000 ms, and post-cue exposure was 400 ms. Single cues were predictive of which item would be probed (valid trials twice as frequent as
invalid). Asterisks indicate significant differences, p G 0.05. (b) Maximum likelihood estimates of parameters of the mixture model
(illustrated in Figure 3), for invalid, valid, and neutral cue trials. Note that cuing condition is reflected in variability of the Gaussian response
component, while non-target and uniform components make negligible contribution to errors.
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These results confirm that the increase in storage
resolution observed for the cued item comes at the cost
of a decrease in resolution for the uncued item, consistent
with a partial withdrawal of limited memory resources
from the low-priority item and their reallocation to the
item with greater relevance to the task.

General discussion

Previously, studies of working memory encoding have
been based on techniques such as change detection (Luck
& Vogel, 1997; Pashler, 1988; Vogel et al., 2006;
Woodman & Vogel, 2005) or whole report (Gegenfurtner
& Sperling, 1993; Shibuya & Bundesen, 1988; Sperling,
1960), which are intended to measure whether or not a
stimulus is stored in WM. However, a growing body of
evidence indicates that this binary classification is insuffi-
cient as a description of WM storage, because stored items
can also vary in the fidelity of their representation (Alvarez
& Cavanagh, 2004; Awh, Barton, & Vogel, 2007; Bays
et al., 2009; Bays & Husain, 2008; Bays et al., 2011;
Fougnie et al., 2010; Gorgoraptis et al., 2011; Lakha &
Wright, 2004; Palmer, 1990; Wilken & Ma, 2004; Zhang
& Luck, 2008). In the present study, we combined masked
presentation of a memory array with a reproduction task in
order to assess the precision with which briefly presented
visual information is represented in WM.

Time course of encoding and storage
in working memory

In Experiment 1, we observed effects of presentation
duration on recall precision (Figure 2) that were accurately
described by the interaction of two separate constraints: a
processing limit that determines the encoding rate at
which visual input enters WM and a storage limit that sets
the maximum precision with which this input can be
maintained.
Following prolonged exposure to a visual array, recall

should be constrained by limits on storage only. At the
longest display durations, the precision with which each
visual item was recalled declined monotonically with the
number of items in the array. As observed in previous
studies (Bays et al., 2009; Bays & Husain, 2008), this
relationship between precision and memory load was
accurately described by a power law (Figure 2c). The
results are consistent with a limit on the total amount of
visual information that can be maintained in WM.
In contrast, when a visual array is presented very

briefly, the quality of subsequent recall should depend
primarily on how rapidly visual information can be
transferred into WM. At the shortest exposure durations,
the precision of recall was significantly reduced compared

to prolonged exposure, but precision was still highly
dependent on the total number of items to be encoded.
Rather than a power law, the initial rate of rise in precision
was found to have a simple inverse (1/N) relationship with
the number of items in the array (Figure 2b), consistent
with a limit on processing capacity that is independent of
the previously identified limit on storage.
This same inverse relationship between processing rate

and set size is the basis of an influential model of visual
attention (TVA), which has had considerable success in
reproducing many classical results in visual search and
divided attention (Bundesen, 1990; Bundesen & Habekost,
2008). TVA is an example of a parallel model, in which
multiple stimuli are processed simultaneously in a race for
storage in working memory, as distinct from serial models
in which stimuli are selected one at a time for attentional
processing followed by transfer to WM (Hoffman, 1979;
Wolfe, 1994).

Sources of error in recall: Variability,
misbinding, and guessing

Both parallel and serial models are consistent with an
increase in recall performance with exposure duration, as
observed in the present study, but they make different
predictions regarding the distribution of errors in the
reproduction task. To investigate, we applied to our data a
probabilistic model of response selection (Bays et al.,
2009), which assigns errors to one of three components
(Figure 3a): Gaussian-distributed errors due to variability
in recall of the target orientation, “binding errors” where
the orientation of one of the other non-target items is
erroneously reported, and random errors that are unrelated
to any of the orientations in the memory array.
According to a serial model of WM encoding, reducing

the encoding time results in a step-wise decrease in the
number of items present in memory and, hence, an
increase in random responding (i.e., guessing). However,
each item that gains access to memory has already been
fully processed to the maximum possible resolution, so
this model predicts no effect of exposure duration on the
variability of the Gaussian error distribution.
In fact, both random responding and variability declined

with increasing exposure duration (Figure 3b). The
changes in variability rule out a strictly serial model, in
which items are transferred to WM only once their
processing is complete. Indeed, substantial effects of
exposure duration on recall variability were observed even
when there was only one item in the display, indicating
gradual accumulation of visual information into a single
WM representation.
At the briefest presentation times, there was evidence

for a substantial frequency of random responses, partic-
ularly with larger arrays. While superficially this appears
inconsistent with a process in which all array items are
encoded simultaneously into WM, parallel models such as
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TVA typically incorporate a stochastic element, such that
different items are encoded at different rates from trial to
trial (Bundesen, 1990). As a result, at any given moment
during encoding, each item will be at a different stage of
representation in working memory. For very brief pre-
sentations, therefore, encoding of some items may be at
such an early stage that responses are indistinguishable
from chance.
Consistent with this hypothesis, random responses

declined to negligible levels as exposure time increased
(Figure 3). At the longest exposures, the frequency of
random responding was equivalent to less than one item
per array, indicating that information eventually accumu-
lated in WM about every item presented. However, the
evidence for incomplete encoding of larger arrays even
with exposures as long as 300 ms may have important
consequences for studies that attempt to measure WM
storage capacity based on very briefly displayed memory
arrays.
Our findings suggest that recall errors following brief

exposures may reflect incomplete encoding of array
stimuli into working memory, as opposed to limits on its
capacity. This may, in part, explain why some recent
studies using exposures of e200 ms have obtained results
that, interpreted in terms of capacity, would indicate that
working memory can hold only È2 colors or orientations
at one time (Anderson et al., 2011; Zhang & Luck, 2008),
a finding not supported by the present results nor by
previous studies using 9500 ms presentation times (e.g.,
Bays et al., 2009; Fougnie et al., 2010; Gorgoraptis et al.,
2011).
The habitual use of short exposure durations in working

memory studies appears to have arisen with two aims in
mind: (1) minimizing eye movements during the exposure
period and (2) limiting the contribution of long-term
memory (LTM) to recall. Shifts of gaze between display
elements could potentially disrupt encoding through
saccadic suppression of visual input or bias storage toward
the smaller set of fixated memory items. However, these
effects are best excluded by active monitoring of eye
position (as in the present study) rather than reducing
display duration.
The possibility that activation of long-term memory

representations may contribute to recall performance is
more difficult to exclude. However, selecting memory
targets from a continuous feature space (e.g., the 180-
range of orientations in the present study) as opposed to a
small set of discrete features values (as common in change
detection tasks, e.g., Luck & Vogel, 1997) will tend to
limit the usefulness of LTM representations as aides to
recall. More importantly, there is little evidence to suggest
that contamination by LTM is prevented by using brief
(e.g., 100 ms) displays. In particular, the smooth evolution
of recall precision with time observed in the present study
(Figure 2a) does not support a two-stage process of
sequential encoding into WM and then LTM but rather

is consistent with a continuous process of encoding visual
information into a single capacity-limited store.
The third component of the response distribution

corresponds to binding errors (Allen et al., 2006; Bays
et al., 2011; Robertson, 2003; Treisman, 1998; Wheeler &
Treisman, 2002; Wolfe & Cave, 1999). These errors occur
because accurate reproduction of the probed item requires
not only recall of the orientations in the preceding array
but also recall of which orientation corresponds to the
probed color. If the “binding information” that pairs
orientations with colors becomes corrupted, subjects may
respond with the orientation of one of the other, non-target
items in the memory array.
These binding errors occurred with greatest frequency

at the shortest exposure durations, but importantly, unlike
random errors, their frequency appeared to plateau at a
constant level as presentation time increased. This limit-
ing frequency increased with array size, indicating that
binding errors became more prevalent as array size
increased. Hence, the overall decline in recall perfor-
mance with increasing memory load has two main
components: an increase in the variability with which
individual features are stored and a decline in the fidelity
with which bindings between feature dimensions are
maintained. Similarly, both misbinding and increasing
variability contribute independently to the increase in
recall error observed at shorter encoding times (Figure 3b).
The observation of increases in both variability and

misbinding with number of items in the memory array,
here and in previous studies (Bays et al., 2009; Bays &
Husain, 2008, 2009; Bays et al., 2011; Fougnie et al.,
2010; Gorgoraptis et al., 2011), has been interpreted as
supporting a shared-resource model of visual working
memory. According to this proposal, a single memory
resource is distributed between the elements of a visual
scene. As more items are stored, less resource is available
per item, with the result that both object features and
feature bindings are maintained with decreasing fidelity.

Time course of allocation and reallocation
of working memory resources

A critical claim of the shared-resource account of WM
is that the distribution of resources is flexible, such that
prioritized items can be allocated a greater share of resources
and, hence, be remembered with enhanced precision
(Bays & Husain, 2008). This marks the clearest point of
contrast with the influential “slot” model of WM, in which
every visual object is either represented in its entirety in
an individual memory slot or else not stored at all (Cowan,
2001; Luck & Vogel, 1997; Pashler, 1988).
In Experiments 2–4, we observed significant advantages

in the precision of recall for a memory array item cued by
a brief flash (Figures 4 and 5). This effect was due to a
decrease in the variability with which the cued item was
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stored rather than changes in the probability of storage
(Zhang & Luck, 2008), and this decrease was matched by
a corresponding increase in variability for the non-cued
item (Figure 6), as predicted by a resource model.
A precision advantage for the flashed item was observed

even when the flash was irrelevant to the memory task,
indicating an automatic “bottom-up” allocation of mem-
ory resources to the location of the salient external event.
However, varying the post-cue presentation time of the
memory array revealed that this bottom-up effect was
short-lived: Precision of cued and non-cued items returned
to equality within a few hundred milliseconds given
continued exposure to the array.
In contrast, if the flash was predictive of which item

was most likely to be probed in the subsequent test of
recall, the advantage for the cued item was maintained
even up to the longest post-cue exposure durations
(800 ms). This is consistent with the influence of an
additional “top-down” influence on working memory
allocation, biasing the resource distribution toward the
goal-relevant item.
Crucially, while the importance of both bottom-up and

top-down influences on encoding of visual information is
widely recognized (Bays, Singh-Curry, Gorgoraptis,
Driver, & Husain, 2010; Bundesen, 1990; Desimone &
Duncan, 1995; Kastner & Ungerleider, 2000; Lamy &
Zoaris, 2009; Posner, 1980; Theeuwes & Burger, 1998),
the present effects on recall precision were observed even
when the flash occurred during the maintenance phase of
working memory storage, i.e., once both items had been
fully encoded into memory (Figures 5c and 5d). Indeed,
even when the cue was presented at the onset of the array,
significant advantages for the cued item did not develop
until after encoding of both items was largely complete
(with the result that the cue effect was delayed compared
to presentation during maintenance).
These results are consistent with a rapid reallocation of

limited working memory resources. Storage capacity,
initially equally distributed between items, is partially
withdrawn from the uncued item, with a cost to the
resolution of its representation in memory. This freed
capacity is used to encode additional information about
the cued item, enhancing the precision of its memory
representation.

Conclusions

In this study, we have examined how the precision with
which visual objects are stored in working memory
depends on the duration of their presentation. Recall
performance was limited by the rate at which visual
information could be encoded into memory. Our findings
are consistent with a parallel encoding model in which
multiple items are processed simultaneously, resulting in

increasingly precise representation in WM as exposure
time increases.
Recall was also constrained by an upper limit on the

information stored about the array, consistent with
allocation of a limited resource of WM storage determin-
ing the maximum resolution with which each item can be
maintained. Cuing individual items within the array
revealed flexible reallocation of storage, increasing the
resolution of recall for visually salient or behaviorally
important items at the cost of reduced precision for lower
priority items. Such redistribution may allow an optimal
allocation of memory resources to be maintained in the
face of frequent shifts in the behavioral relevance of
objects in our visual environment.
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